Nous étudions le problème d’une borne supérieure effective sur le nombre des racines isolées des solutions de systèmes de type Fuchs sur la sphère de Riemann. Le résultat principal est une borne explicite non uniforme à croissance polynômiale sur la frontière de l’ensemble des systèmes fuchsiens de dimension quelconque ayant m singularités. Comme une fonction de , la borne est doublement exponentielle dans le sens précis décrit dans le manuscrit.
Comme corollaire, nous obtenons la solution à croissance polynômiale du problème d’Hilbert infinitésimal restreint, qui améliore les bornes exponentielles récemment obtenues par A. Glutsyuk et Yu. Ilyashenko
We study the problem of placing effective upper bounds for the number of zeroes of solutions of Fuchsian systems on the Riemann sphere. The principal result is an explicit (non-uniform) upper bound, polynomially growing on the frontier of the class of Fuchsian systems of a given dimension having singular points. As a function of , this bound turns out to be double exponential in the precise sense explained in the paper.
As a corollary, we obtain a solution of the so-called restricted infinitesimal Hilbert 16th problem, an explicit upper bound for the number of isolated zeroes of Abelian integrals which is polynomially growing as the Hamiltonian tends to the degeneracy locus. This improves the exponential bounds recently established by A. Glutsyuk and Yu. Ilyashenko.
Keywords: Fuchsian systems, oscillation, zeros, semialgebraic varieties, effective algebraic geometry, monodromy
Mot clés : systèmes fuschiens, oscillation, zéro, variétés semi-algébriques, monodromie
@article{AIF_2009__59_7_2891_0, author = {Binyamini, Gal and Yakovenko, Sergei}, title = {Polynomial bounds for the oscillation of solutions of {Fuchsian} systems}, journal = {Annales de l'Institut Fourier}, pages = {2891--2926}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {7}, year = {2009}, doi = {10.5802/aif.2511}, mrnumber = {2649342}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2511/} }
TY - JOUR AU - Binyamini, Gal AU - Yakovenko, Sergei TI - Polynomial bounds for the oscillation of solutions of Fuchsian systems JO - Annales de l'Institut Fourier PY - 2009 SP - 2891 EP - 2926 VL - 59 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2511/ DO - 10.5802/aif.2511 LA - en ID - AIF_2009__59_7_2891_0 ER -
%0 Journal Article %A Binyamini, Gal %A Yakovenko, Sergei %T Polynomial bounds for the oscillation of solutions of Fuchsian systems %J Annales de l'Institut Fourier %D 2009 %P 2891-2926 %V 59 %N 7 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2511/ %R 10.5802/aif.2511 %G en %F AIF_2009__59_7_2891_0
Binyamini, Gal; Yakovenko, Sergei. Polynomial bounds for the oscillation of solutions of Fuchsian systems. Annales de l'Institut Fourier, Tome 59 (2009) no. 7, pp. 2891-2926. doi : 10.5802/aif.2511. http://archive.numdam.org/articles/10.5802/aif.2511/
[1] On the number of homotopy types of fibres of a definable map, J. Lond. Math. Soc. (2), Volume 76 (2007) no. 3, pp. 757-776 | DOI | MR | Zbl
[2] On the number of zeros of Abelian integrals. A constructive solution of the Infinitesimal Hilbert Sixteenth Problem, 2008 (Preprint, ArXiv:0808.2952 [math.DS], p. 1-48, to appear in Inventiones Mathematicae)
[3] Upper bounds of topology of complex polynomials in two variables, Mosc. Math. J., Volume 5 (2005) no. 4, p. 781-828, 972 | MR
[4] An explicit formula for period determinant, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 4, pp. 887-917 | DOI | Numdam | MR | Zbl
[5] The restricted infinitesimal Hilbert 16th problem, Dokl. Akad. Nauk, Volume 407 (2006) no. 2, pp. 154-159 | MR
[6] Restricted version of the infinitesimal Hilbert 16th problem, Mosc. Math. J., Volume 7 (2007) no. 2, p. 281-325, 351 | MR | Zbl
[7] Solving systems of polynomial inequalities in subexponential time, J. Symbolic Comput., Volume 5 (1988) no. 1-2, pp. 37-64 | DOI | MR | Zbl
[8] Singular perturbations and zeros of Abelian integrals, Weizmann Institute of Science, Rehovot, December (2001) (Ph. D. Thesis)
[9] Uniform asymptotic bound on the number of zeros of Abelian integrals, 2003 (Preprint ArXiv:math.DS/0305248)
[10] Sur la complexité du principe de Tarski-Seidenberg, Bull. Soc. Math. France, Volume 118 (1990) no. 1, pp. 101-126 | EuDML | Numdam | MR | Zbl
[11] Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc. (N.S.), Volume 39 (2002) no. 3, p. 301-354 (electronic) | DOI | MR | Zbl
[12] Some open problems in real and complex dynamical systems, Nonlinearity, Volume 21 (2008) no. 7, p. T101-T107 | DOI | MR | Zbl
[13] Lectures on Analytic Differential Equations, Graduate Studies in Mathematics, 86, American Mathematical Society, Providence, RI, 2008 | MR | Zbl
[14] Real analytic manifolds with the property of finiteness, and complex abelian integrals, Funktsional. Anal. i Prilozhen., Volume 18 (1984) no. 2, pp. 40-50 | DOI | MR | Zbl
[15] Fewnomials, Translations of Mathematical Monographs, 88, American Mathematical Society, Providence, RI, 1991 (Translated from the Russian by Smilka Zdravkovska) | MR | Zbl
[16] Distribution of zeros of entire functions, Translations of Mathematical Monographs, 5, American Mathematical Society, Providence, R.I., 1980 (Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman) | MR | Zbl
[17] Systems of linear ordinary differential equations with bounded coefficients may have very oscillating solutions, Proc. Amer. Math. Soc., Volume 129 (2001) no. 12, p. 3753-3755 (electronic) | DOI | MR | Zbl
[18] Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems, Electron. Res. Announc. Amer. Math. Soc., Volume 5 (1999), p. 55-65 (electronic) | DOI | EuDML | MR | Zbl
[19] Redundant Picard-Fuchs system for abelian integrals, J. Differential Equations, Volume 177 (2001) no. 2, pp. 267-306 | DOI | MR | Zbl
[20] On the number of zeros of analytic functions in a neighborhood of a Fuchsian singular point with real spectrum, Math. Res. Lett., Volume 3 (1996) no. 3, pp. 359-371 | MR | Zbl
[21] Estimation of the number of zeros of an abelian integral depending on a parameter, and limit cycles, Funktsional. Anal. i Prilozhen., Volume 18 (1984) no. 2, pp. 14-25 | DOI | MR | Zbl
[22] On functions and curves defined by ordinary differential equations, The Arnoldfest (Toronto, ON, 1997) (Fields Inst. Commun.), Volume 24, Amer. Math. Soc., Providence, RI, 1999, pp. 497-525 | MR | Zbl
[23] Quantitative theory of ordinary differential equations and the tangential Hilbert 16th problem, On finiteness in differential equations and Diophantine geometry (CRM Monogr. Ser.), Volume 24, Amer. Math. Soc., Providence, RI, 2005, pp. 41-109 | MR | Zbl
[24] Oscillation of linear ordinary differential equations: on a theorem of A. Grigoriev, J. Dyn. Control Syst., Volume 12 (2006) no. 3, pp. 433-449 | DOI | MR | Zbl
Cité par Sources :