Soit un germe d’un espace analytique réduit de dimension pure. Nous donnons une démonstration analytique du théorème de Briançon-Skoda pour l’anneau local . Ce résultat a déjà été démontré par Huneke en utilisant des méthodes algébriques. Nous obtenons également un résultat beaucoup plus fort pour les idéaux engendrés par peu d’éléments.
Let be a germ of a reduced analytic space of pure dimension. We provide an analytic proof of the uniform Briançon-Skoda theorem for the local ring ; a result which was previously proved by Huneke by algebraic methods. For ideals with few generators we also get much sharper results.
Keywords: Briançon-Skoda theorem, analytic space, residue current
Mot clés : théorème de Briançon-Skoda, espace analytique, courant résiduel
@article{AIF_2010__60_2_417_0, author = {Andersson, Mats and Samuelsson, H\r{a}kan and Sznajdman, Jacob}, title = {On the {Brian\c{c}on-Skoda} theorem on a singular variety}, journal = {Annales de l'Institut Fourier}, pages = {417--432}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {2}, year = {2010}, doi = {10.5802/aif.2527}, zbl = {1200.32007}, mrnumber = {2667781}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2527/} }
TY - JOUR AU - Andersson, Mats AU - Samuelsson, Håkan AU - Sznajdman, Jacob TI - On the Briançon-Skoda theorem on a singular variety JO - Annales de l'Institut Fourier PY - 2010 SP - 417 EP - 432 VL - 60 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2527/ DO - 10.5802/aif.2527 LA - en ID - AIF_2010__60_2_417_0 ER -
%0 Journal Article %A Andersson, Mats %A Samuelsson, Håkan %A Sznajdman, Jacob %T On the Briançon-Skoda theorem on a singular variety %J Annales de l'Institut Fourier %D 2010 %P 417-432 %V 60 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2527/ %R 10.5802/aif.2527 %G en %F AIF_2010__60_2_417_0
Andersson, Mats; Samuelsson, Håkan; Sznajdman, Jacob. On the Briançon-Skoda theorem on a singular variety. Annales de l'Institut Fourier, Tome 60 (2010) no. 2, pp. 417-432. doi : 10.5802/aif.2527. http://archive.numdam.org/articles/10.5802/aif.2527/
[1] Coleff-Herrera currents, duality, and Noetherian operators Preprint Gothenburg (2009), available at arXiv:0902.3064
[2] A residue criterion for strong holomorphicity Ark. Mat., (to appear) available at arXiv:0711.2863
[3] Integral representation with weights. I, Math. Ann., Volume 326 (2003) no. 1, pp. 1-18 | DOI | MR | Zbl
[4] Residue currents and ideals of holomorphic functions, Bull. Sci. Math., Volume 128 (2004) no. 6, pp. 481-512 | DOI | MR | Zbl
[5] Explicit versions of the Briançon-Skoda theorem with variations, Michigan Math. J., Volume 54 (2006) no. 2, pp. 361-373 | DOI | MR | Zbl
[6] Integral representation with weights. II. Division and interpolation, Math. Z., Volume 254 (2006) no. 2, pp. 315-332 | DOI | MR | Zbl
[7] Explicit representation of membership of polynomial ideals Preprint Mittag-Leffler (2008), available at arXiv:0806.2592
[8] Koppelman formulas and the -equation on an analytic space Preprint Mittag-Leffler (2008), available at arXiv:0801.0710
[9] Decomposition of residue currents J. reine angew. Math., (to appear), available at arXiv:0710.2016
[10] Residue currents with prescribed annihilator ideals, Ann. Sci. École Norm. Sup. (4), Volume 40 (2007) no. 6, pp. 985-1007 | Numdam | MR | Zbl
[11] Residue currents and Bezout identities, Progress in Mathematics, 114, Birkhäuser Verlag, Basel, 1993 | MR | Zbl
[12] Residues and -modules, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 605-651 | MR
[13] Les courants résiduels associés à une forme méromorphe, Lecture Notes in Mathematics, 633, Springer, Berlin, 1978 | MR | Zbl
[14] Commutative algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 (With a view toward algebraic geometry) | MR | Zbl
[15] Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths, Invent. Math., Volume 135 (1999) no. 2, pp. 297-328 | DOI | MR | Zbl
[16] Uniform bounds in Noetherian rings, Invent. Math., Volume 107 (1992) no. 1, pp. 203-223 | DOI | MR | Zbl
[17] A Briançon-Skoda theorem for isolated singularities, J. Algebra, Volume 204 (1998) no. 2, pp. 656-665 | DOI | MR | Zbl
[18] On Bochner-Martinelli residue currents and their annihilator ideals, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 6, pp. 2119-2142 | DOI | Numdam
[19] Clôture intégrale des idéaux et équisingularité, Ann. Fac. Sci. Toulouse Math. (6), Volume 17 (2008) no. 4, pp. 781-859 | DOI | Numdam | MR | Zbl
[20] Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J., Volume 28 (1981) no. 2, pp. 199-222 | DOI | MR | Zbl
[21] Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J., Volume 28 (1981) no. 1, pp. 97-116 | DOI | MR | Zbl
[22] Residue currents of the Bochner-Martinelli type, Publ. Mat., Volume 44 (2000) no. 1, pp. 85-117 | MR | Zbl
[23] Regularizations of products of residue and principal value currents, J. Funct. Anal., Volume 239 (2006) no. 2, pp. 566-593 | DOI | MR | Zbl
[24] Riemannsche Hebbarkeitssätze für Cohomologieklassen, Math. Ann., Volume 144 (1961), pp. 345-360 | DOI | MR | Zbl
[25] Application des techniques à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4), Volume 5 (1972), pp. 545-579 | Numdam | MR | Zbl
[26] Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de , C. R. Acad. Sci. Paris Sér. A, Volume 278 (1974), pp. 949-951 | MR | Zbl
[27] An elementary proof of the Briançon-Skoda theorem (Preprint Gothenburg 2008, available at arXiv:0807.0142)
[28] Residue currents of monomial ideals, Indiana Univ. Math. J., Volume 56 (2007) no. 1, pp. 365-388 | DOI | MR | Zbl
Cité par Sources :