The computation of Stiefel-Whitney classes
[Le calcul des classes de Stiefel-Whitney]
Annales de l'Institut Fourier, Tome 60 (2010) no. 2, pp. 565-606.

L’anneau de cohomologie d’un groupe fini, modulo un nombre premier, peut être calculé à l’aide d’un ordinateur, comme l’a montré Carlson. Ici «  calculer  » signifie trouver une présentation en termes de générateurs et relations, et seul l’anneau (gradué) sous-jacent est en jeu. Nous proposons une méthode pour déterminer certains éléments de structure supplémentaires : classes de Stiefel-Whitney et opérations de Steenrod. Les calculs sont concrètement menés pour une centaine de groupes (les résultats sont consultables en détails sur Internet).

Nous donnons ensuite une application : à l’aide des nouvelles informations obtenues, nous pouvons dans de nombreux cas déterminer quelles sont les classes de cohomologie qui sont supportées par des cycles algébriques.

The cohomology ring of a finite group, with coefficients in a finite field, can be computed by a machine, as Carlson has showed. Here “compute” means to find a presentation in terms of generators and relations, and involves only the underlying (graded) ring. We propose a method to determine some of the extra structure: namely, Stiefel-Whitney classes and Steenrod operations. The calculations are explicitly carried out for about one hundred groups (the results can be consulted on the Internet).

Next, we give an application: thanks to the new information gathered, we can in many cases determine which cohomology classes are supported by algebraic varieties.

DOI : 10.5802/aif.2533
Classification : 20J06, 57R20, 65K05, 14C15
Keywords: Cohomology of groups, characteristic classes, algorithms, computers, chow rings
Mot clés : cohomologie des groupes, classes caractéristiques, algorithmes, ordinateurs, anneaux de Chow
Guillot, Pierre 1

1 Université de Strasbourg-CNRS IRMA 7 rue René Descartes 67084 Strasbourg (France)
@article{AIF_2010__60_2_565_0,
     author = {Guillot, Pierre},
     title = {The computation of {Stiefel-Whitney} classes},
     journal = {Annales de l'Institut Fourier},
     pages = {565--606},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {2},
     year = {2010},
     doi = {10.5802/aif.2533},
     mrnumber = {2667787},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2533/}
}
TY  - JOUR
AU  - Guillot, Pierre
TI  - The computation of Stiefel-Whitney classes
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 565
EP  - 606
VL  - 60
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2533/
DO  - 10.5802/aif.2533
LA  - en
ID  - AIF_2010__60_2_565_0
ER  - 
%0 Journal Article
%A Guillot, Pierre
%T The computation of Stiefel-Whitney classes
%J Annales de l'Institut Fourier
%D 2010
%P 565-606
%V 60
%N 2
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2533/
%R 10.5802/aif.2533
%G en
%F AIF_2010__60_2_565_0
Guillot, Pierre. The computation of Stiefel-Whitney classes. Annales de l'Institut Fourier, Tome 60 (2010) no. 2, pp. 565-606. doi : 10.5802/aif.2533. http://archive.numdam.org/articles/10.5802/aif.2533/

[1] Adams, William W.; Loustaunau, Philippe An introduction to Gröbner bases, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994 | MR | Zbl

[2] Atiyah, M. F. Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. (1961) no. 9, pp. 23-64 | DOI | Numdam | MR | Zbl

[3] Brosnan, Patrick Steenrod operations in Chow theory, Trans. Amer. Math. Soc., Volume 355 (2003) no. 5, p. 1869-1903 (electronic) | DOI | MR | Zbl

[4] Carlson, Jon F. personal webpage (http://www.math.uga.edu/~lvalero/cohointro.html)

[5] Carlson, Jon F. Calculating group cohomology: tests for completion, J. Symbolic Comput., Volume 31 (2001) no. 1-2, pp. 229-242 Computational algebra and number theory (Milwaukee, WI, 1996) | DOI | MR | Zbl

[6] Carlson, Jon F.; Townsley, Lisa; Valeri-Elizondo, Luis; Zhang, Mucheng Cohomology rings of finite groups, Algebras and Applications, 3, Kluwer Academic Publishers, Dordrecht, 2003 (With an appendix: Calculations of cohomology rings of groups of order dividing 64 by Carlson, Valeri-Elizondo and Zhang) | MR | Zbl

[7] Evens, Leonard On the Chern classes of representations of finite groups, Trans. Amer. Math. Soc., Volume 115 (1965), pp. 180-193 | DOI | MR | Zbl

[8] Evens, Leonard; Kahn, Daniel S. Chern classes of certain representations of symmetric groups, Trans. Amer. Math. Soc., Volume 245 (1978), pp. 309-330 | DOI | MR | Zbl

[9] Fiedorowicz, Zbigniew; Priddy, Stewart Homology of classical groups over finite fields and their associated infinite loop spaces, Lecture Notes in Mathematics, 674, Springer, Berlin, 1978 | MR | Zbl

[10] Fulton, William; MacPherson, Robert Characteristic classes of direct image bundles for covering maps, Ann. of Math. (2), Volume 125 (1987) no. 1, pp. 1-92 | DOI | MR | Zbl

[11] Green, David J. personal webpage (http://www.math.uni-wuppertal.de/~green/Coho_v2/)

[12] Guillot, Pierre personal webpage (http://www-irma.u-strasbg.fr/~guillot/research/cohomology_of_groups/index.html)

[13] Guillot, Pierre The Chow rings of G 2 and Spin(7), J. Reine Angew. Math., Volume 604 (2007), pp. 137-158 | DOI | MR | Zbl

[14] Guillot, Pierre Addendum to the paper: “The Chow rings of G 2 and Spin (7)” [J. Reine Angew. Math. 604 (2007), 137–158;], J. Reine Angew. Math., Volume 619 (2008), pp. 233-235 | DOI | MR | Zbl

[15] Kahn, Bruno Classes de Stiefel-Whitney de formes quadratiques et de représentations galoisiennes réelles, Invent. Math., Volume 78 (1984) no. 2, pp. 223-256 | DOI | MR | Zbl

[16] Kozlowski, Andrzej The Evens-Kahn formula for the total Stiefel-Whitney class, Proc. Amer. Math. Soc., Volume 91 (1984) no. 2, pp. 309-313 | DOI | MR | Zbl

[17] Kozlowski, Andrzej Transfers in the group of multiplicative units of the classical cohomology ring and Stiefel-Whitney classes, Publ. Res. Inst. Math. Sci., Volume 25 (1989) no. 1, pp. 59-74 | DOI | MR | Zbl

[18] Lannes, Jean Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. (1992) no. 75, pp. 135-244 (With an appendix by Michel Zisman) | DOI | Numdam | MR | Zbl

[19] Milnor, John The Steenrod algebra and its dual, Ann. of Math. (2), Volume 67 (1958), pp. 150-171 | DOI | MR | Zbl

[20] Milnor, John W.; Stasheff, James D. Characteristic classes, Princeton University Press, Princeton, N. J., 1974 (Annals of Mathematics Studies, No. 76) | MR | Zbl

[21] Quillen, Daniel The Adams conjecture, Topology, Volume 10 (1971), pp. 67-80 | DOI | MR | Zbl

[22] Quillen, Daniel The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann., Volume 194 (1971), pp. 197-212 | DOI | MR | Zbl

[23] Schwartz, Lionel Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994 | MR | Zbl

[24] Serre, Jean-Pierre Représentations linéaires des groupes finis, Hermann, Paris, 1978 | MR | Zbl

[25] Thomas, C. B. Characteristic classes and the cohomology of finite groups, Cambridge Studies in Advanced Mathematics, 9, Cambridge University Press, Cambridge, 1986 | MR | Zbl

[26] Totaro, Burt The Chow ring of a classifying space, Algebraic K-theory (Seattle, WA, 1997) (Proc. Sympos. Pure Math.), Volume 67, Amer. Math. Soc., Providence, RI, 1999, pp. 249-281 | MR | Zbl

Cité par Sources :