L’anneau de cohomologie d’un groupe fini, modulo un nombre premier, peut être calculé à l’aide d’un ordinateur, comme l’a montré Carlson. Ici « calculer » signifie trouver une présentation en termes de générateurs et relations, et seul l’anneau (gradué) sous-jacent est en jeu. Nous proposons une méthode pour déterminer certains éléments de structure supplémentaires : classes de Stiefel-Whitney et opérations de Steenrod. Les calculs sont concrètement menés pour une centaine de groupes (les résultats sont consultables en détails sur Internet).
Nous donnons ensuite une application : à l’aide des nouvelles informations obtenues, nous pouvons dans de nombreux cas déterminer quelles sont les classes de cohomologie qui sont supportées par des cycles algébriques.
The cohomology ring of a finite group, with coefficients in a finite field, can be computed by a machine, as Carlson has showed. Here “compute” means to find a presentation in terms of generators and relations, and involves only the underlying (graded) ring. We propose a method to determine some of the extra structure: namely, Stiefel-Whitney classes and Steenrod operations. The calculations are explicitly carried out for about one hundred groups (the results can be consulted on the Internet).
Next, we give an application: thanks to the new information gathered, we can in many cases determine which cohomology classes are supported by algebraic varieties.
Keywords: Cohomology of groups, characteristic classes, algorithms, computers, chow rings
Mot clés : cohomologie des groupes, classes caractéristiques, algorithmes, ordinateurs, anneaux de Chow
@article{AIF_2010__60_2_565_0, author = {Guillot, Pierre}, title = {The computation of {Stiefel-Whitney} classes}, journal = {Annales de l'Institut Fourier}, pages = {565--606}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {2}, year = {2010}, doi = {10.5802/aif.2533}, mrnumber = {2667787}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2533/} }
TY - JOUR AU - Guillot, Pierre TI - The computation of Stiefel-Whitney classes JO - Annales de l'Institut Fourier PY - 2010 SP - 565 EP - 606 VL - 60 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2533/ DO - 10.5802/aif.2533 LA - en ID - AIF_2010__60_2_565_0 ER -
Guillot, Pierre. The computation of Stiefel-Whitney classes. Annales de l'Institut Fourier, Tome 60 (2010) no. 2, pp. 565-606. doi : 10.5802/aif.2533. https://www.numdam.org/articles/10.5802/aif.2533/
[1] An introduction to Gröbner bases, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994 | MR | Zbl
[2] Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. (1961) no. 9, pp. 23-64 | DOI | Numdam | MR | Zbl
[3] Steenrod operations in Chow theory, Trans. Amer. Math. Soc., Volume 355 (2003) no. 5, p. 1869-1903 (electronic) | DOI | MR | Zbl
[4] personal webpage (http://www.math.uga.edu/~lvalero/cohointro.html)
[5] Calculating group cohomology: tests for completion, J. Symbolic Comput., Volume 31 (2001) no. 1-2, pp. 229-242 Computational algebra and number theory (Milwaukee, WI, 1996) | DOI | MR | Zbl
[6] Cohomology rings of finite groups, Algebras and Applications, 3, Kluwer Academic Publishers, Dordrecht, 2003 (With an appendix: Calculations of cohomology rings of groups of order dividing 64 by Carlson, Valeri-Elizondo and Zhang) | MR | Zbl
[7] On the Chern classes of representations of finite groups, Trans. Amer. Math. Soc., Volume 115 (1965), pp. 180-193 | DOI | MR | Zbl
[8] Chern classes of certain representations of symmetric groups, Trans. Amer. Math. Soc., Volume 245 (1978), pp. 309-330 | DOI | MR | Zbl
[9] Homology of classical groups over finite fields and their associated infinite loop spaces, Lecture Notes in Mathematics, 674, Springer, Berlin, 1978 | MR | Zbl
[10] Characteristic classes of direct image bundles for covering maps, Ann. of Math. (2), Volume 125 (1987) no. 1, pp. 1-92 | DOI | MR | Zbl
[11] personal webpage (http://www.math.uni-wuppertal.de/~green/Coho_v2/)
[12] personal webpage (http://www-irma.u-strasbg.fr/~guillot/research/cohomology_of_groups/index.html)
[13] The Chow rings of
[14] Addendum to the paper: “The Chow rings of
[15] Classes de Stiefel-Whitney de formes quadratiques et de représentations galoisiennes réelles, Invent. Math., Volume 78 (1984) no. 2, pp. 223-256 | DOI | MR | Zbl
[16] The Evens-Kahn formula for the total Stiefel-Whitney class, Proc. Amer. Math. Soc., Volume 91 (1984) no. 2, pp. 309-313 | DOI | MR | Zbl
[17] Transfers in the group of multiplicative units of the classical cohomology ring and Stiefel-Whitney classes, Publ. Res. Inst. Math. Sci., Volume 25 (1989) no. 1, pp. 59-74 | DOI | MR | Zbl
[18] Sur les espaces fonctionnels dont la source est le classifiant d’un
[19] The Steenrod algebra and its dual, Ann. of Math. (2), Volume 67 (1958), pp. 150-171 | DOI | MR | Zbl
[20] Characteristic classes, Princeton University Press, Princeton, N. J., 1974 (Annals of Mathematics Studies, No. 76) | MR | Zbl
[21] The Adams conjecture, Topology, Volume 10 (1971), pp. 67-80 | DOI | MR | Zbl
[22] The
[23] Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994 | MR | Zbl
[24] Représentations linéaires des groupes finis, Hermann, Paris, 1978 | MR | Zbl
[25] Characteristic classes and the cohomology of finite groups, Cambridge Studies in Advanced Mathematics, 9, Cambridge University Press, Cambridge, 1986 | MR | Zbl
[26] The Chow ring of a classifying space, Algebraic
- Stiefel-Whitney classes of representations of dihedral groups, Communications in Algebra (2025), p. 1 | DOI:10.1080/00927872.2025.2457570
- Stiefel-Whitney Classes for finite special linear groups of even rank, Journal of Algebra (2025) | DOI:10.1016/j.jalgebra.2025.03.009
- Cellular approximations to the diagonal map, Mathematics of Computation (2024) | DOI:10.1090/mcom/3981
- , 2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY, Volume 2834 (2023), p. 080124 | DOI:10.1063/5.0161599
- Stiefel–Whitney classes of representations of SL(2, 𝑞), Journal of Group Theory, Volume 0 (2023) no. 0 | DOI:10.1515/jgth-2022-0164
Cité par 5 documents. Sources : Crossref