Nous caractérisons de deux manières différentes les polygones de Newton jacobiens des branches planes. Ces caractérisations donnent, en particulier, des critères combinatoires d’irréductibilité des séries complexes en deux variables et des conditions nécessaires pour qu’une courbe dans le plan complexe soit le discriminant d’une branche plane.
In this paper we characterize, in two different ways, the Newton polygons which are jacobian Newton polygons of a plane branch. These characterizations give in particular combinatorial criteria of irreducibility for complex series in two variables and necessary conditions which a complex curve has to satisfy in order to be the discriminant of a complex plane branch.
Keywords: Irreducible plane curve, jacobian Newton polygon, polar invariant, approximate root
Mot clés : courbe plane irréductible, polygone de Newton jacobien, invariant polaire, racine approchée
@article{AIF_2010__60_2_683_0, author = {Barroso, Evelia R. Garc{\'\i}a and Gwo\'zdziewicz, Janusz}, title = {Characterization of jacobian {Newton} polygons of plane branches and new criteria of irreducibility}, journal = {Annales de l'Institut Fourier}, pages = {683--709}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {2}, year = {2010}, doi = {10.5802/aif.2536}, zbl = {1197.32012}, mrnumber = {2667790}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2536/} }
TY - JOUR AU - Barroso, Evelia R. García AU - Gwoździewicz, Janusz TI - Characterization of jacobian Newton polygons of plane branches and new criteria of irreducibility JO - Annales de l'Institut Fourier PY - 2010 SP - 683 EP - 709 VL - 60 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2536/ DO - 10.5802/aif.2536 LA - en ID - AIF_2010__60_2_683_0 ER -
%0 Journal Article %A Barroso, Evelia R. García %A Gwoździewicz, Janusz %T Characterization of jacobian Newton polygons of plane branches and new criteria of irreducibility %J Annales de l'Institut Fourier %D 2010 %P 683-709 %V 60 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2536/ %R 10.5802/aif.2536 %G en %F AIF_2010__60_2_683_0
Barroso, Evelia R. García; Gwoździewicz, Janusz. Characterization of jacobian Newton polygons of plane branches and new criteria of irreducibility. Annales de l'Institut Fourier, Tome 60 (2010) no. 2, pp. 683-709. doi : 10.5802/aif.2536. http://archive.numdam.org/articles/10.5802/aif.2536/
[1] Irreducibility Criterion for Germs of Analytic Functions of Two Complex Variables, Advances in Mathematics, Volume 74 (1989), pp. 190-257 | DOI | MR | Zbl
[2] Newton-Puiseux Expansions and Generalized Tschirnhausen Transformation, J. Reine Angew. Math., Volume 260 (1973), pp. 47-83 261 (1973), 29–54 | DOI | MR | Zbl
[3] Semigroups corresponding to algebroid branches in the plane, Proc. of the AMS, Volume 32 (1972) no. 2, pp. 381-384 | DOI | MR | Zbl
[4] Singularities of plane curves, Lecture Note Series, 276, London Mathematical Society, 2000 | MR | Zbl
[5] Polarinvarianten und die Topologie von Kurvensingularitaten, 147, Bonner Mathematische Schriften, 1983 | MR | Zbl
[6] Sur les courbes polaires d’une courbe plane réduite, London Math. Soc., Volume 81, Part 1 (2000), pp. 1-28 | Zbl
[7] Concentration multi-échelles de courbure dans des fibres de Milnor, Comment. Math. Helv., Volume 74 (1999), pp. 398-418 | DOI | MR | Zbl
[8] On the Merle formula for polar invariants, Bull. Soc. Sci. Lett. Łódź, Volume 41 (1991), pp. 61-67 | MR | Zbl
[9] On the Approximate Roots of polynomials, Annales Polonici Mathematici LX3, 1995 (199–210) | Zbl
[10] On the polar quotients of an analytic plane curve, Kodai Math. J., Volume 25 (2002), pp. 43-53 | DOI | MR | Zbl
[11] Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976), pp. 1-31 | DOI | MR | Zbl
[12] Generalized Newton-Puiseux Theory and Hensel’s Lemma in , Canadian Journal of Mathematics, Volume 41 (1989) no. 6, pp. 1101-1116 | DOI | MR | Zbl
[13] On analytic function germs of two complex variables, Topology, Volume 16 (1977), pp. 299-310 | DOI | MR | Zbl
[14] Newton-Puiseux roots of Jacobian determinants, J. Algebraic Geometry, Volume 13 (2004), pp. 579-601 | MR | Zbl
[15] On the Jacobian Newton polygon of plane curve singularities, Manuscripta Math., Volume 125 (2008), pp. 309-324 | DOI | MR | Zbl
[16] Lieu discriminant d’un germe analytique de corang 1 de vers , Ann. Inst. Fourier, Volume 32 (1982) no. 4, pp. 91-118 | DOI | Numdam | MR | Zbl
[17] Discriminant d’un germe et quotients de contact dans la résolution of , Annales de la Faculté de Sciences de Toulouse, 6e série, tome 3 (1998) no. 3, pp. 497-525 | Numdam | MR | Zbl
[18] Discriminant of a germ and Seifert fibred manifolds, Journal London Mathematical Society, Volume 59 (1999) no. 1, pp. 207-226 | DOI | MR | Zbl
[19] Invariants polaires des courbes planes, Invent. Math., Volume 41 (1977), pp. 103-111 | DOI | MR | Zbl
[20] Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of , Ann. Polon. Math. LI (1990), pp. 275-281 | MR | Zbl
[21] Approximate Roots, Fields Institute Communications, Volume 33 (2003), pp. 285-321 | MR | Zbl
[22] The hunting of invariants in the geometry of discriminants, Proc. Nordic summer school (1976), pp. 565-677 (Per Holm, editor, Sijthoff and Noordhoff 1978) | MR | Zbl
[23] Variétés polaires.I. Invariants polaires des singularités des hypersurfaces, Invent. Math., Volume 40 (1977), pp. 267-292 | DOI | MR | Zbl
[24] Polyèdre de Newton Jacobien et équisingularité, Séminaire sur les Singularités, Publications Math. Université Paris VII, 1980, pp. 193-221 | MR
[25] Algebraic Curves, Princeton University Press, 1950 | MR | Zbl
[26] Chains on the Eggers tree and polar curves, Rev. Mat. Iberoamericana, Volume 19 (2003) no. 2, pp. 745-754 | MR | Zbl
[27] Singular points of plane curves, Student Texts, Volume 63, London Mathematical Society, 2004 | MR | Zbl
[28] Le problème des modules pour les branches planes, Centre de Maths, École Polytechnique, 1975 (Reprinted by Hermann, Paris 1986) | Zbl
Cité par Sources :