Rigidity of Rank-One Factors of Compact Symmetric Spaces
Annales de l'Institut Fourier, Volume 61 (2011) no. 2, pp. 491-509.

We consider the decomposition of a compact-type symmetric space into a product of factors and show that the rank-one factors, when considered as totally geodesic submanifolds of the space, are isolated from inequivalent minimal submanifolds.

Nous considérons la décomposition d’un espace symétrique de type compact et nous montrons que les facteurs de rang 1, considérés comme sous-variétés de cet espace, sont isolés de toutes les sous-variétés minimales inéquivalentes.

DOI: 10.5802/aif.2621
Classification: 53C40,  53C35,  53C42
Keywords: Minimal submanifolds, rigidity, symmetric spaces.
Clarke, Andrew 1

1 Université de Nantes Laboratoire de Mathématiques Jean Leray 2, rue de la Houssinière - BP 92208 44322 Nantes Cedex 3 (France)
@article{AIF_2011__61_2_491_0,
     author = { Clarke, Andrew},
     title = {Rigidity of {Rank-One} {Factors} of {Compact} {Symmetric} {Spaces}},
     journal = {Annales de l'Institut Fourier},
     pages = {491--509},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {61},
     number = {2},
     year = {2011},
     doi = {10.5802/aif.2621},
     mrnumber = {2895065},
     zbl = {1231.53044},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2621/}
}
TY  - JOUR
AU  -  Clarke, Andrew
TI  - Rigidity of Rank-One Factors of Compact Symmetric Spaces
JO  - Annales de l'Institut Fourier
PY  - 2011
DA  - 2011///
SP  - 491
EP  - 509
VL  - 61
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2621/
UR  - https://www.ams.org/mathscinet-getitem?mr=2895065
UR  - https://zbmath.org/?q=an%3A1231.53044
UR  - https://doi.org/10.5802/aif.2621
DO  - 10.5802/aif.2621
LA  - en
ID  - AIF_2011__61_2_491_0
ER  - 
%0 Journal Article
%A  Clarke, Andrew
%T Rigidity of Rank-One Factors of Compact Symmetric Spaces
%J Annales de l'Institut Fourier
%D 2011
%P 491-509
%V 61
%N 2
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2621
%R 10.5802/aif.2621
%G en
%F AIF_2011__61_2_491_0
 Clarke, Andrew. Rigidity of Rank-One Factors of Compact Symmetric Spaces. Annales de l'Institut Fourier, Volume 61 (2011) no. 2, pp. 491-509. doi : 10.5802/aif.2621. http://archive.numdam.org/articles/10.5802/aif.2621/

[1] Barbosa, J.L.M. An extrinsic rigidity theorem for minimal immersions of S 2 into S n , J. Diff. Geom., Volume 14 (1979), pp. 355-368 | MR | Zbl

[2] Chavel, I. Riemannian Symmetric Spaces of Rank One, Marcel Dekker Inc., New York, 1972 | MR | Zbl

[3] Chern, S.S.; Do Carmo, M.; Kobayashi, S. Minimal submanifolds of the sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer Verlag, 1970 | MR | Zbl

[4] Fischer-Colbrie, D. Some rigidity theorems for minimal submanifolds of the sphere, Acta Math., Volume 145 (1980), pp. 29-46 | DOI | MR | Zbl

[5] Gluck, H.; Morgan, F.; Ziller, W. Calibrated geometries in Grassmann manifolds, Comment Math. Helv., Volume 64 (1989), pp. 256-268 | DOI | MR | Zbl

[6] Hsiang, W.T.; Hsiang, W.Y. Examples of codimension-one closed minimal submanifolds in some symmetric spaces. I., J. Diff. Geom., Volume 15 (1980), pp. 543-551 | MR | Zbl

[7] Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry, 2, Interscience, New York, 1969 | Zbl

[8] Lawson Jr., H.B. Complete minimal surfaces in S 3 , Ann. of Math., Volume 92 (1970), pp. 335-374 | DOI | MR | Zbl

[9] Lawson Jr., H.B. Rigidity theorems in rank-1 symmetric spaces, J. Diff. Geom., Volume 4 (1970), pp. 349-357 | MR | Zbl

[10] Mok, N.; Siu, Y.T.; Yeung, S.-K. Geometric Superrigidity, J. Diff. Geom., Volume 113 (1993) no. 1, pp. 57-83 | MR | Zbl

[11] Simon, L. Lecture Notes on Geometric Measure Theory, Australian National University, 1983

[12] Simons, J. Minimal varieties in riemannian manifolds, Ann. Math., Volume 88 (1968), pp. 65-105 | DOI | MR | Zbl

[13] Thi, D.Č. Minimal real currents on compact riemannian manifolds, Math. USSR Izv., Volume 11 (1970), pp. 807-820 | DOI | Zbl

Cited by Sources: