Cet article fait partie d’ une série consacrée à l’étude de la cohomologie des espaces classifiants. En généralisant l’algèbre de Weil d’une algèbre de Lie et le modèle BRST de Kalkman, nous introduisons l’algèbre de Weil
This paper belongs to a series of papers devoted to the study of the cohomology of classifying spaces. Generalizing the Weil algebra of a Lie algebra and Kalkman’s BRST model, here we introduce the Weil algebra
Keywords: Lie algebroids, classifying spaces, equivariant cohomology
Mot clés : algebroide de Lie, espaces classifiants, cohomologie équivariant
@article{AIF_2011__61_3_927_0, author = {Arias Abad, Camilo and Crainic, Marius}, title = {The {Weil} algebra and the {Van} {Est} isomorphism}, journal = {Annales de l'Institut Fourier}, pages = {927--970}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {3}, year = {2011}, doi = {10.5802/aif.2633}, zbl = {1237.58021}, mrnumber = {2918722}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2633/} }
TY - JOUR AU - Arias Abad, Camilo AU - Crainic, Marius TI - The Weil algebra and the Van Est isomorphism JO - Annales de l'Institut Fourier PY - 2011 SP - 927 EP - 970 VL - 61 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2633/ DO - 10.5802/aif.2633 LA - en ID - AIF_2011__61_3_927_0 ER -
%0 Journal Article %A Arias Abad, Camilo %A Crainic, Marius %T The Weil algebra and the Van Est isomorphism %J Annales de l'Institut Fourier %D 2011 %P 927-970 %V 61 %N 3 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2633/ %R 10.5802/aif.2633 %G en %F AIF_2011__61_3_927_0
Arias Abad, Camilo; Crainic, Marius. The Weil algebra and the Van Est isomorphism. Annales de l'Institut Fourier, Tome 61 (2011) no. 3, pp. 927-970. doi : 10.5802/aif.2633. https://www.numdam.org/articles/10.5802/aif.2633/
[1] Representations up to homotopy and Bott’s spectral sequence for Lie groupoids (preprint arXiv:0911.2859, submitted for publication)
[2] Representations up to homotopy of Lie algebroids (preprint arXiv:0901.0319, submitted for publication)
[3] Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004 (Corrected reprint of the 1992 original) | MR | Zbl
[4] On the Chern-Weil homomorphism and the continuous cohomology of Lie-groups, Advances in Math., Volume 11 (1973), pp. 289-303 | DOI | MR | Zbl
[5] On the de Rham theory of certain classifying spaces, Advances in Math., Volume 20 (1976) no. 1, pp. 43-56 | DOI | MR | Zbl
[6] Integration of twisted Dirac brackets, Duke Math. J., Volume 123 (2004) no. 3, pp. 549-607 | DOI | MR | Zbl
[7] Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de Topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 15-27 | Zbl
[8] Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv., Volume 78 (2003) no. 4, pp. 681-721 | DOI | MR | Zbl
[9] Prequantization and Lie brackets, J. Symplectic Geom., Volume 2 (2004) no. 4, pp. 579-602 http://projecteuclid.org/getRecord?id=euclid.jsg/1144070630 | MR | Zbl
[10] Integrability of Lie brackets, Ann. of Math. (2), Volume 157 (2003) no. 2, pp. 575-620 | DOI | MR | Zbl
[11] Group cohomology and Lie algebra cohomology in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math., Volume 15 (1953), p. 484-492, 493–504 | MR | Zbl
[12] Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999 With an appendix containing two reprints by Henri Cartan [MR0042426 (13,107e); MR0042427 (13,107f)] | MR | Zbl
[13] Groupoïdes d’holonomie et classifiants, Astérisque (1984) no. 116, pp. 70-97 Transversal structure of foliations (Toulouse, 1982) | Numdam | Zbl
[14] Foliated bundles and characteristic classes, Lecture Notes in Mathematics, Vol. 493, Springer-Verlag, Berlin, 1975 | MR | Zbl
[15] General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[16] Superconnections, Thom classes, and equivariant differential forms, Topology, Volume 25 (1986) no. 1, pp. 85-110 | DOI | MR | Zbl
[17] Supergroupoids, double structures and equivariant cohomology, Berkeley (2006) (Ph. D. Thesis Arxiv math/0605356) | MR
[18] Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, 91, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[19] Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. (1968) no. 34, pp. 105-112 | DOI | EuDML | Numdam | MR | Zbl
[20] Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.), Volume 16 (1987) no. 1, pp. 101-104 | DOI | MR | Zbl
[21] Extensions of symplectic groupoids and quantization, J. Reine Angew. Math., Volume 417 (1991), pp. 159-189 | EuDML | MR | Zbl
Cité par Sources :