Soit une variété riemannienne compacte connexe orientée de dimension . On étudie l’espace des structures de classe fondamentale fixée, comme fibré principal de dimension infinie sur la variété des métriques riemanniennes de . Afin d’étudier les perturbations de la métrique dans les équations de Seiberg-Witten, on étudie la transversalité des équations universelles, paramétrées par l’espace de toutes les structures . On montre que, sur une surface de Kähler, pour une métrique hermitienne suffisamment proche à la métrique de Kähler de départ, l’espace de modules de monopôles de Seiberg-Witten relatif à la métrique est lisse de la dimension attendue.
Let a compact connected oriented 4-manifold. We study the space of -structures of fixed fundamental class, as an infinite dimensional principal bundle on the manifold of riemannian metrics on . In order to study perturbations of the metric in Seiberg-Witten equations, we study the transversality of universal equations, parametrized with all -structures . We prove that, on a complex Kähler surface, for an hermitian metric sufficiently close to the original Kähler metric, the moduli space of Seiberg-Witten monopoles relative to the metric is smooth of the expected dimension.
Keywords: Seiberg-Witten theory, perturbations of the metric, Kähler surfaces, transversality
Mot clés : équations de Seiberg-Witten, perturbations de la métrique, surfaces de Kähler, transversalité
@article{AIF_2011__61_3_1259_0, author = {Scala, Luca}, title = {Perturbations of the metric in {Seiberg-Witten} equations}, journal = {Annales de l'Institut Fourier}, pages = {1259--1297}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {3}, year = {2011}, doi = {10.5802/aif.2640}, zbl = {1238.57029}, mrnumber = {2918729}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2640/} }
TY - JOUR AU - Scala, Luca TI - Perturbations of the metric in Seiberg-Witten equations JO - Annales de l'Institut Fourier PY - 2011 SP - 1259 EP - 1297 VL - 61 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2640/ DO - 10.5802/aif.2640 LA - en ID - AIF_2011__61_3_1259_0 ER -
%0 Journal Article %A Scala, Luca %T Perturbations of the metric in Seiberg-Witten equations %J Annales de l'Institut Fourier %D 2011 %P 1259-1297 %V 61 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2640/ %R 10.5802/aif.2640 %G en %F AIF_2011__61_3_1259_0
Scala, Luca. Perturbations of the metric in Seiberg-Witten equations. Annales de l'Institut Fourier, Tome 61 (2011) no. 3, pp. 1259-1297. doi : 10.5802/aif.2640. http://archive.numdam.org/articles/10.5802/aif.2640/
[1] Monopôles de Seiberg-Witten et conjecture de Thom (d’après Kronheimer, Mrowka et Witten), Astérisque (1997) no. 241, pp. Exp. No. 807, 3, 59-96 (Séminaire Bourbaki, Vol. 1995/96) | EuDML | Numdam | MR | Zbl
[2] Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 10, Springer-Verlag, Berlin, 1987 | MR | Zbl
[3] Spineurs, opérateurs de Dirac et variations de métriques, Comm. Math. Phys., Volume 144 (1992) no. 3, pp. 581-599 | DOI | MR | Zbl
[4] The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1990 (Oxford Science Publications) | MR | Zbl
[5] Seiberg-Witten theory, Symplectic singularities and geometry of gauge fields (Warsaw, 1995) (Banach Center Publ.), Volume 39, Polish Acad. Sci., Warsaw, 1997, pp. 231-267 | EuDML | MR | Zbl
[6] The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group, Michigan Math. J., Volume 36 (1989) no. 3, pp. 323-344 | DOI | MR | Zbl
[7] Instantons and four-manifolds, Mathematical Sciences Research Institute Publications, 1, Springer-Verlag, New York, 1991 | MR | Zbl
[8] Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, 25, American Mathematical Society, Providence, RI, 2000 (Translated from the 1997 German original by Andreas Nestke) | MR | Zbl
[9] The Riemannian manifold of all Riemannian metrics, Quart. J. Math. Oxford Ser. (2), Volume 42 (1991) no. 166, pp. 183-202 | DOI | MR | Zbl
[10] Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons Inc., New York, 1996 (Reprint of the 1963 original, A Wiley-Interscience Publication) | MR
[11] The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, RI, 1997 | MR | Zbl
[12] Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl
[13] Generic metrics and connections on Spin- and Spin-manifolds, Comm. Math. Phys., Volume 188 (1997) no. 2, pp. 407-437 | DOI | MR | Zbl
[14] The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, 44, Princeton University Press, Princeton, NJ, 1996 | MR | Zbl
[15] Seiberg-Witten invariants for manifolds with , and the universal wall crossing formula, Internat. J. Math., Volume 7 (1996) no. 6, pp. 811-832 | DOI | MR | Zbl
[16] The wild world of 4-manifolds, American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[17] Electric-magnetic duality, monopole condensation, and confinement in supersymmetric Yang-Mills theory, Nuclear Phys. B, Volume 426 (1994) no. 1, pp. 19-52 | DOI | MR | Zbl
[18] Monopoles, duality and chiral symmetry breaking in supersymmetric QCD, Nuclear Phys. B, Volume 431 (1994) no. 3, pp. 484-550 | DOI | MR | Zbl
[19] An infinite dimensional version of Sard’s theorem, Amer. J. Math., Volume 87 (1965), pp. 861-866 | DOI | MR | Zbl
[20] Introduction à la théorie de Jauge, 2005 (Cours de D.E.A. http://www.cmi.univ-mrs.fr/~teleman/documents/cours-sw.pdf)
[21] Monopoles and four manifolds, Math. Res. Lett., Volume 3 (1994) no. 7, pp. 654-675 | MR | Zbl
Cité par Sources :