Chaque variété ouverte
Every open manifold
Keywords: codimension one foliation, Reeb component, non-leaf, geometry of leaves, bounded homology property
Mot clés : feuilletages de codimension un, composante de Reeb, non-feuille, géométrie des feuilles, propriété d’homologie bornée
@article{AIF_2011__61_4_1599_0, author = {Schweitzer, Paul A.}, title = {Riemannian manifolds not quasi-isometric to leaves in codimension one foliations}, journal = {Annales de l'Institut Fourier}, pages = {1599--1631}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {4}, year = {2011}, doi = {10.5802/aif.2653}, zbl = {1241.57036}, mrnumber = {2951506}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2653/} }
TY - JOUR AU - Schweitzer, Paul A. TI - Riemannian manifolds not quasi-isometric to leaves in codimension one foliations JO - Annales de l'Institut Fourier PY - 2011 SP - 1599 EP - 1631 VL - 61 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2653/ DO - 10.5802/aif.2653 LA - en ID - AIF_2011__61_4_1599_0 ER -
%0 Journal Article %A Schweitzer, Paul A. %T Riemannian manifolds not quasi-isometric to leaves in codimension one foliations %J Annales de l'Institut Fourier %D 2011 %P 1599-1631 %V 61 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2653/ %R 10.5802/aif.2653 %G en %F AIF_2011__61_4_1599_0
Schweitzer, Paul A. Riemannian manifolds not quasi-isometric to leaves in codimension one foliations. Annales de l'Institut Fourier, Tome 61 (2011) no. 4, pp. 1599-1631. doi : 10.5802/aif.2653. https://www.numdam.org/articles/10.5802/aif.2653/
[1] The structure of generalized Reeb components (2009) (Preprint)
[2] A generalization of Novikov’s Theorem on the existence of Reeb components in codimension one foliations (2010) (In preparation)
[3] Manifolds which cannot be leaves of foliations, Topology, Volume 35 (1996), pp. 335-353 | DOI | MR | Zbl
[4] Geometric Theory of Foliations, Birkhäuser Verlag, 1986 (Translation of Teoria Geométrica das Folheações, Projeto Euclides, IMPA, Rio de Janeiro, 1981) | MR
[5] Every surface is a leaf, Topology, Volume 26 (1987), pp. 265-285 | DOI | MR | Zbl
[6] Riemannian Geometry, Birkhäuser Verlag, 1998 (Translation of Geometria Riemanniana, Projeto Euclides, IMPA, Rio de Janeiro, 1988) | MR
[7] Une variété qui n’est pas une feuille, Topology, Volume 24 (1985), pp. 67-73 | MR | Zbl
[8] Topologie des feuilles génériques, Annals of Math., Volume 141 (1995), pp. 387-422 | DOI | MR | Zbl
[9] Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, Volume 16 (1962), pp. 367-397 | EuDML | Numdam | MR | Zbl
[10] Travaux de Novikov sur les feuilletages, Séminaire Bourbaki, 1968 no. 339 | Numdam | Zbl
[11] Croissance des feuilletages presque sans holonomie, Foliations and Gelfand-Fuks Cohomology, Rio de Janeiro, 1976, Volume 652, Springer Lecture Notes in Mathematics (1978), pp. 141-182 | MR | Zbl
[12] Introduction to the geometry of foliations, B, Vieweg, Braunschweig, 1983 | MR
[13] Open manifolds which are non-realizable as leaves, Kodai Math. J., Volume 8 (1985), pp. 112-119 | DOI | MR | Zbl
[14] Characteristic invariants of noncompact Riemannian manifolds, Topology, Volume 23 (1984), pp. 299-302 | DOI | MR | Zbl
[15] Topology of foliations, Trans. Moscow Math. Soc., Volume 14 (1965), pp. 268-304 | MR | Zbl
[16] Geometry of leaves, Topology, Volume 20 (1981), pp. 209-218 | DOI | MR | Zbl
[17] Sur certaines propriétés topologiques des variétés feuilletées, Actual. Sci. Ind. 1183, Hermann, Paris, 1952 | MR | Zbl
[18] Surfaces not quasi-isometric to leaves of foliations of compact 3-manifolds, Analysis and geometry in foliated manifolds, Proceedings of the VII International Colloquium on Differential Geometry, Santiago de Compostela, 1994, World Scientific, Singapore (1995), pp. 223-238 | MR | Zbl
[19] Deformation of homeomorphisms on stratified sets, Comment. Math. Helv., Volume 4 (1972), pp. 123-163 | DOI | MR | Zbl
[20] Components of topological foliations (Russian), Mat. Sb. (N.S.), Volume 119 (1982), pp. 340-354 | MR | Zbl
[21] When is a manifold a leaf of some foliation?, Bull. Amer. Math. Soc., Volume 81 (1975), pp. 622-624 | DOI | MR | Zbl
[22] Cycles for the dynamical study of foliated manifolds and complex manifolds, Inventiones Math., Volume 36 (1976), pp. 225-255 | DOI | MR | Zbl
[23] A virtual leaf, Int. J., Bifur. and Chaos, Volume 7 (1996), pp. 1845-1852 | MR | Zbl
[24] An example of a 2-dimensional no leaf, Proceedings of the 1993 Tokyo Foliations Symposium, World Scientific, Singapore (1994), pp. 475-477 | MR
[25] Sturm-Liouville Theory, Amer. Math. Soc., Providence, 2005
- Exotic Nonleaves with Infinitely Many Ends, International Mathematics Research Notices, Volume 2022 (2022) no. 14, p. 10912 | DOI:10.1093/imrn/rnab042
- Coarse homology of leaves of foliations, Journal of Topology and Analysis, Volume 12 (2020) no. 04, p. 1003 | DOI:10.1142/s1793525319500717
- Exotic open 4–manifolds which are nonleaves, Geometry Topology, Volume 22 (2018) no. 5, p. 2791 | DOI:10.2140/gt.2018.22.2791
- Bounded geometry and leaves, Mathematische Nachrichten, Volume 290 (2017) no. 10, p. 1448 | DOI:10.1002/mana.201600223
- Foliated vector fields without periodic orbits, Israel Journal of Mathematics, Volume 214 (2016) no. 1, p. 443 | DOI:10.1007/s11856-016-1336-3
- MANIFOLDS THAT ARE NOT LEAVES OF CODIMENSION ONE FOLIATIONS, International Journal of Mathematics, Volume 24 (2013) no. 14, p. 1350102 | DOI:10.1142/s0129167x13501024
- Realization Problems in the Theory of Foliations, Progress and Challenges in Dynamical Systems, Volume 54 (2013), p. 309 | DOI:10.1007/978-3-642-38830-9_19
Cité par 7 documents. Sources : Crossref