Dans cet article, nous présentons une nouvelle approche de la théorie de Nekhoroshev pour un hamiltonien intégrable générique, qui évite complètement le problème des petits diviseurs. La preuve est une extension d’une méthode introduite par Lochak, elle n’utilise que des moyennisations périodiques et de l’approximation diophantienne simultanée, ainsi que des arguments géométriques introduit par le second auteur. Notre méthode permet également d’obtenir des résultats de stabilité pour des hamiltoniens génériques non-analytiques, ainsi que de nouveaux résultats de stabilité au voisinage des tores invariants linéairement stables.
In this article, we present a new approach of Nekhoroshev’s theory for a generic unperturbed Hamiltonian which completely avoids small divisors problems. The proof is an extension of a method introduced by P. Lochak, it combines averaging along periodic orbits with simultaneous Diophantine approximation and uses geometric arguments designed by the second author to handle generic integrable Hamiltonians. This method allows to deal with generic non-analytic Hamiltonians and to obtain new results of generic stability around linearly stable tori.
Keywords: Hamiltonian systems, perturbation of integrable systems, effective stability
Mot clés : systèmes hamiltoniens, perturbation de systèmes intégrables, stabilité effective
@article{AIF_2012__62_1_277_0, author = {Bounemoura, Abed and Niederman, Laurent}, title = {Generic {Nekhoroshev} theory without small divisors}, journal = {Annales de l'Institut Fourier}, pages = {277--324}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {1}, year = {2012}, doi = {10.5802/aif.2706}, zbl = {1257.37036}, mrnumber = {2986272}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2706/} }
TY - JOUR AU - Bounemoura, Abed AU - Niederman, Laurent TI - Generic Nekhoroshev theory without small divisors JO - Annales de l'Institut Fourier PY - 2012 SP - 277 EP - 324 VL - 62 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2706/ DO - 10.5802/aif.2706 LA - en ID - AIF_2012__62_1_277_0 ER -
%0 Journal Article %A Bounemoura, Abed %A Niederman, Laurent %T Generic Nekhoroshev theory without small divisors %J Annales de l'Institut Fourier %D 2012 %P 277-324 %V 62 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2706/ %R 10.5802/aif.2706 %G en %F AIF_2012__62_1_277_0
Bounemoura, Abed; Niederman, Laurent. Generic Nekhoroshev theory without small divisors. Annales de l'Institut Fourier, Tome 62 (2012) no. 1, pp. 277-324. doi : 10.5802/aif.2706. http://archive.numdam.org/articles/10.5802/aif.2706/
[1] Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR, Volume 156 (1964), pp. 9-12 | MR | Zbl
[2] Mathematical aspects of classical and celestial mechanics, Encyclopaedia of Mathematical Sciences, 3, Springer-Verlag, Berlin, 2006 ([Dynamical systems. III], Translated from the Russian original by E. Khukhro) | MR | Zbl
[3] Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations, Math. Z., Volume 230 (1999) no. 2, pp. 345-387 | DOI | MR | Zbl
[4] Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems, J. Statist. Phys., Volume 71 (1993) no. 3-4, pp. 569-606 | DOI | MR | Zbl
[5] Long time stability in perturbations of completely resonant PDE’s, Acta Appl. Math., Volume 70 (2002) no. 1-3, pp. 1-22 (Symmetry and perturbation theory) | DOI | MR
[6] Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolmogorov, Arnold, Moser, Rüssmann, Zehnder, Herman, Pöschel,), Astérisque (1986) no. 133-134, pp. 113-157 (Seminar Bourbaki, Vol. 1984/85) | Numdam | Zbl
[7] Generic super-exponential stability of invariant tori (2009) (to appear)
[8] Nekhoroshev estimates for finitely differentiable quasi-convex Hamiltonians, J. Differential Equations, Volume 249 (2010) no. 11, pp. 2905-2920 | DOI | MR
[9] Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations, Ergodic Theory Dynam. Systems, Volume 24 (2004) no. 5, pp. 1331-1357 | DOI | MR
[10] An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957 | MR | Zbl
[11] On sets of Haar measure zero in abelian Polish groups, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Volume 13 (1972), p. 255-260 (1973) | MR | Zbl
[12] Effective stability and KAM theory, J. Differential Equations, Volume 128 (1996) no. 2, pp. 415-490 | DOI | MR | Zbl
[13] Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems, Comm. Math. Phys., Volume 197 (1998) no. 2, pp. 347-360 | DOI | MR | Zbl
[14] Prevalence (Handbook of Dynamical Systems), Volume 3, Elsevier Science, 2010, pp. 43 -87
[15] Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.), Volume 27 (1992) no. 2, pp. 217-238 | DOI | MR | Zbl
[16] A criterion of steepness for analytic functions, Uspekhi Mat. Nauk, Volume 41 (1986) no. 1(247), pp. 193-194 | MR | Zbl
[17] Renormalization of multidimensional Hamiltonian flows, Nonlinearity, Volume 19 (2006) no. 12, pp. 2727-2753 | DOI | MR
[18] Multidimensional continued fractions, dynamical renormalization and KAM theory, Comm. Math. Phys., Volume 270 (2007) no. 1, pp. 197-231 | DOI | MR
[19] On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR (N.S.), Volume 98 (1954), pp. 527-530 | MR | Zbl
[20] A tutorial on KAM theory, Smooth ergodic theory and its applications (Seattle, WA, 1999) (Proc. Sympos. Pure Math.), Volume 69, Amer. Math. Soc., Providence, RI, 2001, pp. 175-292 | MR
[21] Canonical perturbation theory: an approach based on joint approximations, Uspekhi Mat. Nauk, Volume 47 (1992) no. 6(288), pp. 59-140 | MR | Zbl
[22] Multiphase averaging for classical systems, Applied Mathematical Sciences, 72, Springer-Verlag, New York, 1988 (With applications to adiabatic theorems, Translated from the French by H. S. Dumas) | MR | Zbl
[23] Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, Volume 2 (1992) no. 4, pp. 495-499 | DOI | MR | Zbl
[24] Stability of nearly integrable convex Hamiltonian systems over exponentially long times, Seminar on Dynamical Systems (St. Petersburg, 1991) (Progr. Nonlinear Differential Equations Appl.), Volume 12, Birkhäuser, Basel, 1994, pp. 15-34 | MR | Zbl
[25] Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci. (2002) no. 96, p. 199-275 (2003) | Numdam | MR
[26] Superexponential stability of KAM tori, J. Statist. Phys., Volume 78 (1995) no. 5-6, pp. 1607-1617 | DOI | MR | Zbl
[27] The Nekhoroshev theorem and the asteroid belt dynamical system, Celestial Mech. Dynam. Astronom., Volume 65 (1996/97) no. 1-2, pp. 107-136 The dynamical behaviour of our planetary system (Ramsau, 1996) | DOI | MR | Zbl
[28] The separation of motions in systems with rapidly rotating phase, Prikl. Mat. Mekh., Volume 48 (1984) no. 2, pp. 197-204 | MR | Zbl
[29] An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Uspehi Mat. Nauk, Volume 32 (1977) no. 6(198), p. 5-66, 287 | MR | Zbl
[30] An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II, Trudy Sem. Petrovsk. (1979) no. 5, pp. 5-50 | MR | Zbl
[31] Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system, Nonlinearity, Volume 11 (1998) no. 6, pp. 1465-1479 | DOI | MR | Zbl
[32] Exponential stability for small perturbations of steep integrable Hamiltonian systems, Ergodic Theory Dynam. Systems, Volume 24 (2004) no. 2, pp. 593-608 | DOI | MR | Zbl
[33] Hamiltonian stability and subanalytic geometry, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 3, pp. 795-813 | DOI | EuDML | Numdam | MR | Zbl
[34] Prevalence of exponential stability among nearly integrable Hamiltonian systems, Ergodic Theory Dynam. Systems, Volume 27 (2007) no. 3, pp. 905-928 | DOI | MR | Zbl
[35] Nekhoroshev Theory, Encyclopedia of Complexity and Systems Science, Springer, 2009, pp. 5986-5998
[36] Prevalence, Bull. Amer. Math. Soc. (N.S.), Volume 42 (2005) no. 3, p. 263-290 (electronic) | DOI | MR | Zbl
[37] On Nekhoroshev estimates for a nonlinear Schrödinger equation and a theorem by Bambusi, Nonlinearity, Volume 12 (1999) no. 6, pp. 1587-1600 | DOI | MR | Zbl
[38] On Nekhoroshev’s estimate at an elliptic equilibrium, Internat. Math. Res. Notices (1999) no. 4, pp. 203-215 | DOI | Zbl
[39] A lecture on the classical KAM theorem, Smooth ergodic theory and its applications (Seattle, WA, 1999) (Proc. Sympos. Pure Math.), Volume 69, Amer. Math. Soc., Providence, RI, 2001, pp. 707-732 | MR
[40] Gevrey separation of fast and slow variables, Nonlinearity, Volume 9 (1996) no. 2, pp. 353-384 | DOI | MR | Zbl
[41] The geometry of critical and near-critical values of differentiable mappings, Math. Ann., Volume 264 (1983) no. 4, pp. 495-515 | DOI | MR | Zbl
[42] Tame geometry with application in smooth analysis, Lecture Notes in Mathematics, 1834, Springer-Verlag, Berlin, 2004 | MR
Cité par Sources :