Asymptotics of eigensections on toric varieties
Annales de l'Institut Fourier, Volume 63 (2013) no. 2, pp. 733-762.

Using exhaustion properties of invariant plurisubharmonic functions along with basic combinatorial information on toric varieties, we prove convergence results for sequences of densities |ϕ n | 2 =|s N | 2 /||s N || L 2 2 for eigensections s N Γ(X,L N ) approaching a semiclassical ray. Here X is a normal compact toric variety and L is an ample line bundle equipped with an arbitrary positive bundle metric which is invariant with respect to the compact form of the torus. Our work was motivated by and extends that of Shiffman, Tate and Zelditch.

En utilisant les propriétés d’exhaustion des fonctions plurisousharmoniques invariantes en combinaison avec les données combinatoires basiques des variétés toriques, nous montrons des résultats de convergence pour des suites de densités |ϕ n |=|s N | 2 /||s N || L 2 2 des sections propres s N Γ(X,L N ) approchant un rayon semi-classique. Ici X est une variété torique normale et L désigne un fibré en droites ample muni d’une métriqué positive quelconque invariante par rapport à l’action de la forme compacte du tore. Notre travail était motivé par ceux de Shiffman, Tate et Zelditch et généralise ceux-ci.

DOI: 10.5802/aif.2775
Classification: 34L20, 14M25, 22E70
Keywords: asymptotics of eigensections, toric varieties, plurisubharmonic
Mot clés : asymptotes de sections propres, variété torique, plurisousharmonique
Huckleberry, A. 1; Sebert, H. 1

1 Fakulät und Institut für Mathematik Ruhr Universität Bochum Universitätsstrasse 150 D-44780 Bochum, Germany
@article{AIF_2013__63_2_733_0,
     author = {Huckleberry, A. and Sebert, H.},
     title = {Asymptotics of eigensections on toric varieties},
     journal = {Annales de l'Institut Fourier},
     pages = {733--762},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {63},
     number = {2},
     year = {2013},
     doi = {10.5802/aif.2775},
     zbl = {1281.32017},
     mrnumber = {3112847},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2775/}
}
TY  - JOUR
AU  - Huckleberry, A.
AU  - Sebert, H.
TI  - Asymptotics of eigensections on toric varieties
JO  - Annales de l'Institut Fourier
PY  - 2013
SP  - 733
EP  - 762
VL  - 63
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2775/
DO  - 10.5802/aif.2775
LA  - en
ID  - AIF_2013__63_2_733_0
ER  - 
%0 Journal Article
%A Huckleberry, A.
%A Sebert, H.
%T Asymptotics of eigensections on toric varieties
%J Annales de l'Institut Fourier
%D 2013
%P 733-762
%V 63
%N 2
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2775/
%R 10.5802/aif.2775
%G en
%F AIF_2013__63_2_733_0
Huckleberry, A.; Sebert, H. Asymptotics of eigensections on toric varieties. Annales de l'Institut Fourier, Volume 63 (2013) no. 2, pp. 733-762. doi : 10.5802/aif.2775. http://archive.numdam.org/articles/10.5802/aif.2775/

[1] Arnold, V.; Varchenko, A.; Goussein-Zadé, S. Singularités des applications différentiables, 2 (monodromie et comportement asymptotique des intégrales), Edition Mir, 1986

[2] Barlet, D. Singularités réelles isolées et développements asymptotiques d’intégrales oscillantes (Congrès n° 9 Actes des journées mathématiques à la mémoire de Jean Leray), Seminaires et SMF, 2004, pp. 25-50 | Zbl

[3] Burns, D.; Guillemin, V.; Wong, Z. Stability Functions, Geom. Funct. Anal., Volume 19 (2010) no. 5, pp. 1258-1295 | DOI | MR | Zbl

[4] Fulton, W. Introduction to Toric Varieties, Annals of Math. Study, Princeton Univ. Press, Princeton, 1983 no. 131 | MR | Zbl

[5] Heinzner, P. Geometric invariant theory on Stein spaces, Math. Ann., Volume 289 (1991), pp. 631-662 | DOI | MR | Zbl

[6] Heinzner, P.; Huckleberry, A. Manuscripta Math., Math. Ann., Volume 83 (1994), pp. 19-29 | MR | Zbl

[7] Heinzner, P.; Huckleberry, A. Analytic Hilbert Quotients, Several Complex Variables (Math. Sci. Res. Inst. Publ.), Volume 37, Cambridge University Press, 1999, pp. 309-349 | MR | Zbl

[8] Hörmander, L. The Analysis of Linear Partial Differential Operators, I, Springer Verlag, New York, 1990 | MR | Zbl

[9] Jeanquartier, P. Développement asymptotique de la distribution de Dirac, C.r. Acad. Sci. Paris, Volume 271 (1970), pp. 1159-1161 | MR | Zbl

[10] Ma, X.; Zhang, W. Bergman kernels and Symplectic reduction, Astérisque, 318 | Numdam | MR | Zbl

[11] Neeman, A. The topology of quotient varieties, Ann. of Math. (2), Volume 122 (1985) no. 3, pp. 419-459 | DOI | MR | Zbl

[12] Sebert, H. Semiclassical limits of Kählerian potentials on toric varieties (Dissertation of the Ruhr-Universität Bochum, expected December 2010)

[13] Shiffman, B.; Tate, T.; Zelditch, S. Distribution laws for integrable eigenfunctions, Ann. Inst. Fourier, Volume 54 (2004), pp. 1497-1546 | DOI | Numdam | MR | Zbl

[14] Song, J.; Zelditch, S. Bergman metrics and geodesics in the space of Kähler metrics on toric varieties, Analysis & PDE, Volume 3 (2010) no. 3, pp. 295-358 | DOI | MR

Cited by Sources: