We give a Hodge-theoretic parametrization of certain real Lie group orbits in the compact dual of a Mumford-Tate domain, and characterize the orbits which contain a naive limit Hodge filtration. A series of examples are worked out for the groups , , and .
Nous donnons une paramétrisation de certaines orbites de groupes de Lie réels dans le dual compact d’un domaine de Mumford-Tate et une caractérisation des orbites qui contiennent une filtration limite de Hodge naïve. Une série d’exemples est élaborée pour les groupes , , et .
Keywords: Mumford-Tate groups, Mumford-Tate domains, nilpotent orbits, variation of Hodge structure, Shimura varieties
Mot clés : groupes de Mumford-Tate, domaine de Mumford-Tate, orbites nilpotentes, variation de structure de Hodge, variétés de Shimura
@article{AIF_2014__64_6_2659_0, author = {Kerr, Matt and Pearlstein, Gregory}, title = {Naive boundary strata and nilpotent orbits}, journal = {Annales de l'Institut Fourier}, pages = {2659--2714}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {6}, year = {2014}, doi = {10.5802/aif.2923}, zbl = {06387350}, mrnumber = {3331177}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2923/} }
TY - JOUR AU - Kerr, Matt AU - Pearlstein, Gregory TI - Naive boundary strata and nilpotent orbits JO - Annales de l'Institut Fourier PY - 2014 SP - 2659 EP - 2714 VL - 64 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2923/ DO - 10.5802/aif.2923 LA - en ID - AIF_2014__64_6_2659_0 ER -
%0 Journal Article %A Kerr, Matt %A Pearlstein, Gregory %T Naive boundary strata and nilpotent orbits %J Annales de l'Institut Fourier %D 2014 %P 2659-2714 %V 64 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2923/ %R 10.5802/aif.2923 %G en %F AIF_2014__64_6_2659_0
Kerr, Matt; Pearlstein, Gregory. Naive boundary strata and nilpotent orbits. Annales de l'Institut Fourier, Volume 64 (2014) no. 6, pp. 2659-2714. doi : 10.5802/aif.2923. http://archive.numdam.org/articles/10.5802/aif.2923/
[1] Guide to the Atlas software: computational representation theory of real reductive groups, Representation theory of real reductive Lie groups (Snowbird, July 2006) (Contemp. Math.), Volume 472, Amer. Math. Soc., Providence, RI, 2008, pp. 1-37 | MR | Zbl
[2] Algorithms for representation theory of real reductive groups, J. Inst. Math. Jussieu, Volume 8 (2009) no. 2, pp. 209-259 | DOI | MR | Zbl
[3] Smooth compactifications of locally symmetric varieties, Cambridge University Press, Cambridge, 2010, pp. x+230 | MR | Zbl
[4] Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991, pp. xii+288 | MR | Zbl
[5] Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. (1965) no. 27, pp. 55-150 | DOI | Numdam | MR | Zbl
[6] Cohomologie automorphe et compactifications partielles de certaines variéetés de Griffiths-Schmid, Compos. Math., Volume 141 (2005) no. 5, pp. 1081-1102 | DOI | MR | Zbl
[7] Mixed Hodge structures and compactifications of Siegel’s space (preliminary report), Algebraic Geometry, Angers, 1979 (A. Beauville, Ed), Sijthoff & Noordhoff, 1980, pp. 77-105 | MR | Zbl
[8] Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure, Invent. Math., Volume 67 (1982) no. 1, pp. 101-115 | DOI | MR | Zbl
[9] Degeneration of Hodge structures, Ann. of Math. (2), Volume 123 (1986) no. 3, pp. 457-535 | DOI | MR | Zbl
[10] Mixed Hodge structures, compactifications and monodromy weight filtration, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984, pp. 75-100 | MR | Zbl
[11] Cycle spaces of flag domains, Progress in Mathematics, 245, Birkhäuser Boston, Inc., Boston, MA, 2006, pp. xx+339 (A complex geometric viewpoint) | MR | Zbl
[12] Mumford-Tate groups and domains, Annals of Mathematics Studies, 183, Princeton University Press, Princeton, NJ, 2012, pp. viii+289 (Their geometry and arithmetic) | MR | Zbl
[13] Hodge theory, complex geometry, and representation theory, CBMS Regional Conference Series in Mathematics, 118, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2013, pp. iv+308 | MR
[14] Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975, pp. xiv+247 (Graduate Texts in Mathematics, No. 21) | MR | Zbl
[15] Boundary components of Mumford-Tate domains (Preprint, arXiv:1210.5301)
[16] Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 2002, pp. xviii+812 | MR | Zbl
[17] Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, Representations of Lie groups, Kyoto, Hiroshima, 1986, (eds. K. Okamoto and T. Oshima) (Adv. Stud. Pure Math.), Volume 14, Academic Press, Boston, MA, 1988, pp. 541-559 | MR | Zbl
[18] Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits, Hiroshima Math. J., Volume 18 (1988) no. 1, pp. 59-67 | MR | Zbl
[19] Canonical models of (mixed) Shimura varieties and automorphic vector bundles, Automorphic forms, Shimura varieties, and -functions, Vol. I (Ann Arbor, MI, 1988) (Perspect. Math.), Volume 10, Academic Press, Boston, MA, 1990, pp. 283-414 | MR | Zbl
[20] Variations of mixed Hodge structure, Higgs fields, and quantum cohomology, Manuscripta Math., Volume 102 (2000) no. 3, pp. 269-310 | DOI | MR | Zbl
[21] Arithmetical compactification of mixed Shimura varieties, Univ. Bonn (1989) (Ph. D. Thesis) | MR | Zbl
[22] The Bruhat order on symmetric varieties, Geom. Dedicata, Volume 35 (1990) no. 1-3, pp. 389-436 | DOI | MR | Zbl
[23] Combinatorics and geometry of -orbits on the flag manifold, Linear algebraic groups and their representations (Los Angeles, CA, 1992) (Contemp. Math.), Volume 153, Amer. Math. Soc., Providence, RI, 1993, pp. 109-142 | MR | Zbl
[24] Schubert varieties as variations of Hodge structure, Selecta Math. (N.S.), Volume 20 (2014) no. 3, pp. 719-768 | DOI | MR
[25] Variation of Hodge structure: the singularities of the period mapping, Invent. Math., Volume 22 (1973), pp. 211-319 | DOI | MR | Zbl
[26] Computing real Weyl groups (notes from a 2006 lecture by D. Vogan, available at http://www.math.utah.edu/~ptrapa/preprints.html)
[27] The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 1121-1237 | DOI | MR | Zbl
[28] Fine structure of Hermitian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Dekker, New York, 1972, p. 271-357. Pure and App. Math., Vol. 8 | MR | Zbl
[29] Simplifying and unifying Bruhat order for , , , and (preprint, arXiv:1107.0518v3)
Cited by Sources: