We prove that for a Q-Gorenstein degeneration of del Pezzo surfaces, the number of non-Du Val singularities is at most . Degenerations with and non-Du Val points are investigated
Nous montrons que pour une dégénérescence Q-Gorenstein de surfaces de del Pezzo, le nombre de singularités non-Du Val est au plus . Les dégénérescences avec et points non-Du Val sont étudiées.
Keywords: del Pezzo surface, T-singularity, deformation
Mot clés : surface de Del Pezzo, T-singularité, déformation
@article{AIF_2015__65_1_369_0, author = {Prokhorov, Yuri}, title = {A note on degenerations of del {Pezzo} surfaces}, journal = {Annales de l'Institut Fourier}, pages = {369--388}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {1}, year = {2015}, doi = {10.5802/aif.2934}, zbl = {06496543}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2934/} }
TY - JOUR AU - Prokhorov, Yuri TI - A note on degenerations of del Pezzo surfaces JO - Annales de l'Institut Fourier PY - 2015 SP - 369 EP - 388 VL - 65 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2934/ DO - 10.5802/aif.2934 LA - en ID - AIF_2015__65_1_369_0 ER -
%0 Journal Article %A Prokhorov, Yuri %T A note on degenerations of del Pezzo surfaces %J Annales de l'Institut Fourier %D 2015 %P 369-388 %V 65 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2934/ %R 10.5802/aif.2934 %G en %F AIF_2015__65_1_369_0
Prokhorov, Yuri. A note on degenerations of del Pezzo surfaces. Annales de l'Institut Fourier, Volume 65 (2015) no. 1, pp. 369-388. doi : 10.5802/aif.2934. http://archive.numdam.org/articles/10.5802/aif.2934/
[1] Rationale Singularitäten komplexer Flächen, Invent. Math., Volume 4 (1967/1968), pp. 336-358 | DOI | MR | Zbl
[2] Fifteen characterizations of rational double points and simple critical points, Enseign. Math. (2), Volume 25 (1979) no. 1-2, pp. 131-163 | MR | Zbl
[3] Compact moduli of plane curves, Duke Math. J., Volume 124 (2004) no. 2, pp. 213-257 | DOI | MR | Zbl
[4] Compact moduli spaces of surfaces of general type, Compact moduli spaces and vector bundles (Contemp. Math.), Volume 564, Amer. Math. Soc., Providence, RI, 2012, pp. 1-18 | DOI | MR | Zbl
[5] Exceptional bundles associated to degenerations of surfaces, Duke Math. J., Volume 162 (2013) no. 6, pp. 1171-1202 | DOI | MR | Zbl
[6] Smoothable del Pezzo surfaces with quotient singularities, Compos. Math., Volume 146 (2010) no. 1, pp. 169-192 | DOI | MR | Zbl
[7] Three-block exceptional sets on del Pezzo surfaces, Izv. Ross. Akad. Nauk Ser. Mat., Volume 62 (1998) no. 3, pp. 3-38 | DOI | MR | Zbl
[8] Threefolds and deformations of surface singularities, Invent. Math., Volume 91 (1988) no. 2, pp. 299-338 | DOI | MR | Zbl
[9] Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992, pp. 1-258 Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992) | MR
[10] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998, pp. viii+254 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR | Zbl
[11] Normal degenerations of the complex projective plane, J. Reine Angew. Math., Volume 419 (1991), pp. 89-118 | DOI | MR | Zbl
[12] Gorenstein log del Pezzo surfaces of rank one, J. Algebra, Volume 118 (1988) no. 1, pp. 63-84 | DOI | MR | Zbl
[13] The birational geometry of surfaces with rational double points, Math. Ann., Volume 271 (1985) no. 3, pp. 415-438 | DOI | MR | Zbl
[14] On semistable Mori contractions, Izv. Ross. Akad. Nauk Ser. Mat., Volume 68 (2004) no. 2, pp. 147-158 | DOI | MR | Zbl
[15] Towards the second main theorem on complements, J. Algebraic Geom., Volume 18 (2009) no. 1, pp. 151-199 | DOI | MR | Zbl
[16] Lectures on complements on log surfaces, MSJ Memoirs, 10, Mathematical Society of Japan, Tokyo, 2001, pp. viii+130 | MR | Zbl
[17] Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proc. Sympos. Pure Math.), Volume 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345-414 | MR | Zbl
[18] Complements on surfaces, J. Math. Sci. (New York), Volume 102 (2000) no. 2, pp. 3876-3932 (Algebraic geometry, 10) | DOI | MR | Zbl
[19] Smoothings of normal surface singularities, Topology, Volume 20 (1981) no. 3, pp. 219-246 | DOI | MR | Zbl
Cited by Sources: