We study the billiard on a square billiard table with a one-sided vertical mirror. We associate trajectories of these billiards with double rotations and study orbit behavior and questions of complexity.
Nous étudions le billard sur une table carrée avec un miroir vertical à une face. Nous associons les trajectoires de ces billards à des doubles rotations et étudions le comportement des orbites et des questions de complexité.
Keywords: Polygonal billiard, interval translation mapping, spy mirror, complexity
Mot clés : billard polygonal, translation d’intervalles, miroir espion, complexité
@article{AIF_2015__65_5_1881_0, author = {Skripchenko, Alexandra and Troubetzkoy, Serge}, title = {Polygonal {Billiards} with {One} {Sided} {Scattering}}, journal = {Annales de l'Institut Fourier}, pages = {1881--1896}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {5}, year = {2015}, doi = {10.5802/aif.2975}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2975/} }
TY - JOUR AU - Skripchenko, Alexandra AU - Troubetzkoy, Serge TI - Polygonal Billiards with One Sided Scattering JO - Annales de l'Institut Fourier PY - 2015 SP - 1881 EP - 1896 VL - 65 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2975/ DO - 10.5802/aif.2975 LA - en ID - AIF_2015__65_5_1881_0 ER -
%0 Journal Article %A Skripchenko, Alexandra %A Troubetzkoy, Serge %T Polygonal Billiards with One Sided Scattering %J Annales de l'Institut Fourier %D 2015 %P 1881-1896 %V 65 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2975/ %R 10.5802/aif.2975 %G en %F AIF_2015__65_5_1881_0
Skripchenko, Alexandra; Troubetzkoy, Serge. Polygonal Billiards with One Sided Scattering. Annales de l'Institut Fourier, Volume 65 (2015) no. 5, pp. 1881-1896. doi : 10.5802/aif.2975. http://archive.numdam.org/articles/10.5802/aif.2975/
[1] A polynomial bound for the lap number, Qual. Theory Dyn. Syst., Volume 3 (2002) no. 2, pp. 325-329 | DOI | Zbl
[2] Interval translation mappings, Ergodic Theory Dynam. Systems, Volume 15 (1995) no. 5, pp. 821-832 | DOI | Zbl
[3] Renormalization in a class of interval translation maps of branches, Dyn. Syst., Volume 22 (2007) no. 1, pp. 11-24 | DOI | Zbl
[4] The Gauss map on a class of interval translation mappings, Israel J. Math., Volume 137 (2003), pp. 125-148 | DOI | Zbl
[5] Inducing and unique ergodicity of double rotations, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 12, pp. 4133-4147 | DOI | Zbl
[6] Piecewise monotone maps without periodic points: rigidity, measures and complexity, Ergodic Theory Dynam. Systems, Volume 24 (2004) no. 2, pp. 383-405 | DOI | Zbl
[7] Complexity and growth for polygonal billiards, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 3, pp. 835-847 | DOI | Numdam | MR | Zbl
[8] Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Volume 4 (1997) no. 1, pp. 67-88 http://projecteuclid.org/euclid.bbms/1105730624 Journées Montoises (Mons, 1994) | Zbl
[9] Infinite words with uniform frequencies, and invariant measures, Combinatorics, automata and number theory (Encyclopedia Math. Appl.), Volume 135, Cambridge Univ. Press, Cambridge, 2010, pp. 373-409 | Zbl
[10] Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089 | DOI | Zbl
[11] Interval translation mappings, Dynamical systems (Luminy-Marseille, 1998), World Sci. Publ., River Edge, NJ, 2000, pp. 291-302 | Zbl
[12] Double rotations, Discrete Contin. Dyn. Syst., Volume 13 (2005) no. 2, pp. 515-532 | DOI | Zbl
Cited by Sources: