À un germe Nash, nous associons une fonction zêta similaire à la fonction zêta motivique de J. Denef et F. Loeser. Il s’agit d’une série formelle à coefficients dans un anneau de Grothendieck
On démontre que la fonction zêta considérée dans cet article est un invariant de l’équivalence arc-analytique, une caractérisation de l’équivalence blow-Nash de G. Fichou. La formule de convolution permet d’obtenir une classification partielle des polynômes de Brieskorn à équivalence arc-analytique près. Plus précisément, on montre que le type arc-analytique d’un tel polynôme détermine ses exposants.
To a Nash function germ, we associate a zeta function similar to the one introduced by J. Denef and F. Loeser. Our zeta function is a formal power series with coefficients in the Grothendieck ring
We show that our zeta function is an invariant of the arc-analytic equivalence, a version of the blow-Nash equivalence of G. Fichou. The convolution formula allows us to obtain a partial classification of Brieskorn polynomials up to arc-analytic equivalence by showing that the exponents are arc-analytic invariants.
Révisé le :
Accepté le :
Publié le :
Keywords: real singularities, Nash functions, motivic integration, arc-analytic functions, blow-Nash equivalence, arc-analytic equivalence
Mot clés : singularités réelles, fonctions Nash, intégration motivique, fonctions analytiques par arcs, équivalence blow-Nash, équivalence arc-analytique
@article{AIF_2017__67_1_143_0, author = {Campesato, Jean-Baptiste}, title = {On a motivic invariant of the arc-analytic equivalence}, journal = {Annales de l'Institut Fourier}, pages = {143--196}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {1}, year = {2017}, doi = {10.5802/aif.3078}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.3078/} }
TY - JOUR AU - Campesato, Jean-Baptiste TI - On a motivic invariant of the arc-analytic equivalence JO - Annales de l'Institut Fourier PY - 2017 SP - 143 EP - 196 VL - 67 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.3078/ DO - 10.5802/aif.3078 LA - en ID - AIF_2017__67_1_143_0 ER -
%0 Journal Article %A Campesato, Jean-Baptiste %T On a motivic invariant of the arc-analytic equivalence %J Annales de l'Institut Fourier %D 2017 %P 143-196 %V 67 %N 1 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.3078/ %R 10.5802/aif.3078 %G en %F AIF_2017__67_1_143_0
Campesato, Jean-Baptiste. On a motivic invariant of the arc-analytic equivalence. Annales de l'Institut Fourier, Tome 67 (2017) no. 1, pp. 143-196. doi : 10.5802/aif.3078. https://www.numdam.org/articles/10.5802/aif.3078/
[1] Torification and factorization of birational maps, J. Amer. Math. Soc., Volume 15 (2002) no. 3, p. 531-572 (electronic) | DOI
[2] Singularities of differentiable maps. Volume 2, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2012, x+492 pages (Monodromy and asymptotics of integrals, Translated from the Russian by Hugh Porteous and revised by the authors and James Montaldi, Reprint of the 1988 translation)
[3] On periodic points, Ann. of Math. (2), Volume 81 (1965), pp. 82-99
[4] Arc-analytic functions, Invent. Math., Volume 101 (1990) no. 2, pp. 411-424 | DOI
[5] Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., Volume 128 (1997) no. 2, pp. 207-302 | DOI
[6] Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36, Springer-Verlag, Berlin, 1998, x+430 pages (Translated from the 1987 French original, Revised by the authors) | DOI
[7] An inverse mapping theorem for blow-Nash maps on singular spaces (2014) (To appear in Nagoya Math. J.)
[8] On the degree of Igusa’s local zeta function, Amer. J. Math., Volume 109 (1987) no. 6, pp. 991-1008 | DOI
[9] Newton polyhedra and Igusa’s local zeta function, J. Number Theory, Volume 89 (2001) no. 1, pp. 31-64 | DOI
[10] Caractéristiques d’Euler-Poincaré, fonctions zêta locales et modifications analytiques, J. Amer. Math. Soc., Volume 5 (1992) no. 4, pp. 705-720 | DOI
[11] Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998) no. 3, pp. 505-537
[12] Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999) no. 1, pp. 201-232 | DOI
[13] Motivic exponential integrals and a motivic Thom-Sebastiani theorem, Duke Math. J., Volume 99 (1999) no. 2, pp. 285-309 | DOI
[14] Geometry on arc spaces of algebraic varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000) (Progr. Math.), Volume 201, Birkhäuser, Basel, 2001, pp. 327-348
[15] Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology, Volume 41 (2002) no. 5, pp. 1031-1040 | DOI
[16] Motivic invariants of arc-symmetric sets and blow-Nash equivalence, Compos. Math., Volume 141 (2005) no. 3, pp. 655-688 | DOI
[17] Zeta functions and blow-Nash equivalence, Ann. Polon. Math., Volume 87 (2005), pp. 111-126 | DOI
[18] The corank and the index are blow-Nash invariants, Kodai Math. J., Volume 29 (2006) no. 1, pp. 31-40 | DOI
[19] Blow-Nash types of simple singularities, J. Math. Soc. Japan, Volume 60 (2008) no. 2, pp. 445-470 http://projecteuclid.org/euclid.jmsj/1212156658
[20] Motivic invariants of real polynomial functions and their Newton polyhedrons, Math. Proc. Cambridge Philos. Soc., Volume 160 (2016) no. 1, pp. 141-166
[21] Espaces d’arcs et invariants d’Alexander, Comment. Math. Helv., Volume 77 (2002) no. 4, pp. 783-820 | DOI
[22] Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink, Duke Math. J., Volume 132 (2006) no. 3, pp. 409-457 | DOI
[23] Un critère d’extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci. (2002) no. 95, pp. 1-91 | DOI
[24] Motivic-type invariants of blow-analytic equivalence, Ann. Inst. Fourier (Grenoble), Volume 53 (2003) no. 7, pp. 2061-2104 http://aif.cedram.org/item?id=AIF_2003__53_7_2061_0
[25] Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976) no. 1, pp. 1-31
[26] Une classification des singularités réelles, C. R. Acad. Sci. Paris Sér. A-B, Volume 288 (1979) no. 17, p. A809-A812
[27] On classification of real singularities, Invent. Math., Volume 82 (1985) no. 2, pp. 257-262 | DOI
[28] Ensembles semi-algébriques symétriques par arcs, Math. Ann., Volume 282 (1988) no. 3, pp. 445-462 | DOI
[29] Motivic measures, Astérisque (2002) no. 276, pp. 267-297 (Séminaire Bourbaki, Vol. 1999/2000)
[30] Virtual Betti numbers of real algebraic varieties, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 9, pp. 763-768 | DOI
[31] The weight filtration for real algebraic varieties, Topology of stratified spaces (Math. Sci. Res. Inst. Publ.), Volume 58, Cambridge Univ. Press, Cambridge, 2011, pp. 121-160
[32] Real algebraic manifolds, Ann. of Math. (2), Volume 56 (1952), pp. 405-421
[33] Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, p. 31-38 (1996) (A celebration of John F. Nash, Jr.) | DOI
[34] Topology of injective endomorphisms of real algebraic sets, Math. Ann., Volume 328 (2004) no. 1-2, pp. 353-372 | DOI
[35] Espace des germes d’arcs réels et série de Poincaré d’un ensemble semi-algébrique, Ann. Inst. Fourier (Grenoble), Volume 51 (2001) no. 1, pp. 43-68 http://aif.cedram.org/item?id=AIF_2001__51_1_43_0
[36] Singularités à l’infini et intégration motivique, Bull. Soc. Math. France, Volume 140 (2012) no. 1, pp. 51-100
[37] The topology of fibre bundles, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999, viii+229 pages (Reprint of the 1957 edition, Princeton Paperbacks)
[38] Zeta-function of monodromy and Newton’s diagram, Invent. Math., Volume 37 (1976) no. 3, pp. 253-262
[39] Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J., 1965, pp. 205-244
- Jet Schemes and Their Applications in Singularities, Toric Resolutions and Integer Partitions, Handbook of Geometry and Topology of Singularities IV (2023), p. 211 | DOI:10.1007/978-3-031-31925-9_4
- An introduction to 𝑝-adic and motivic integration, zeta functions and invariants of singularities, 𝑝-Adic Analysis, Arithmetic and Singularities, Volume 778 (2022), p. 103 | DOI:10.1090/conm/778/15656
- Quotients and invariants of
-sets equipped with a finite group action, Mathematische Annalen, Volume 377 (2020) no. 3-4, p. 1015 | DOI:10.1007/s00208-020-01994-7 - On the arc-analytic type of some weighted homogeneous polynomials, Journal of the London Mathematical Society, Volume 97 (2018) no. 3, p. 377 | DOI:10.1112/jlms.12108
- Complete classification of Brieskorn polynomials up to the arc-analytic equivalence, Mathematische Zeitschrift, Volume 290 (2018) no. 3-4, p. 1145 | DOI:10.1007/s00209-018-2056-7
- On Grothendieck rings and algebraically constructible functions, Mathematische Annalen, Volume 369 (2017) no. 1-2, p. 761 | DOI:10.1007/s00208-017-1564-9
Cité par 6 documents. Sources : Crossref