Nous considérons des sommes de fonctions oscillantes sur des intervalles contenus dans un groupe fini cyclique, de taille proche de la racine carrée du cardinal du groupe. Nous démontrons tout d’abord des bornes non-triviales pour tout intervalle de longueur à peine plus grande que cette racine carrée (améliorant l’inégalité de Polyá-Vinogradov) pour les fonctions bornées dont la transformée de Fourier est bornée. Nous démontrons ensuite que l’existence d’une borne non-triviale pour un intervalle de taille un peu plus petite que la racine carrée est une propriété stable par transformation de Fourier. Nous donnons des applications liées aux fonctions trace sur les corps finis.
We consider sums of oscillating functions on intervals in cyclic groups of size close to the square root of the size of the group. We first prove non-trivial estimates for intervals of length slightly larger than this square root (bridging the “Polyá-Vinogradov gap” in some sense) for bounded functions with bounded Fourier transforms. We then prove that the existence of non-trivial estimates for ranges slightly below the square-root bound is stable under the discrete Fourier transform. We then give applications related to trace functions over finite fields.
Révisé le :
Accepté le :
Publié le :
Keywords: Short exponential sums, trace functions, van der Corput lemma, completion method, Riemann Hypothesis over finite fields
Mot clés : Somme exponentielle courte, fonction trace, lemme de van der Corput, méthode de complétion, hypothèse de Riemann sur les corps finis
@article{AIF_2017__67_1_423_0, author = {Fouvry, \'Etienne and Kowalski, Emmanuel and Michel, Philippe and Raju, Chandra Sekhar and Rivat, Jo\"el and Soundararajan, Kannan}, title = {On short sums of trace functions}, journal = {Annales de l'Institut Fourier}, pages = {423--449}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {1}, year = {2017}, doi = {10.5802/aif.3087}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3087/} }
TY - JOUR AU - Fouvry, Étienne AU - Kowalski, Emmanuel AU - Michel, Philippe AU - Raju, Chandra Sekhar AU - Rivat, Joël AU - Soundararajan, Kannan TI - On short sums of trace functions JO - Annales de l'Institut Fourier PY - 2017 SP - 423 EP - 449 VL - 67 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3087/ DO - 10.5802/aif.3087 LA - en ID - AIF_2017__67_1_423_0 ER -
%0 Journal Article %A Fouvry, Étienne %A Kowalski, Emmanuel %A Michel, Philippe %A Raju, Chandra Sekhar %A Rivat, Joël %A Soundararajan, Kannan %T On short sums of trace functions %J Annales de l'Institut Fourier %D 2017 %P 423-449 %V 67 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3087/ %R 10.5802/aif.3087 %G en %F AIF_2017__67_1_423_0
Fouvry, Étienne; Kowalski, Emmanuel; Michel, Philippe; Raju, Chandra Sekhar; Rivat, Joël; Soundararajan, Kannan. On short sums of trace functions. Annales de l'Institut Fourier, Tome 67 (2017) no. 1, pp. 423-449. doi : 10.5802/aif.3087. http://archive.numdam.org/articles/10.5802/aif.3087/
[1] How the number of points of an elliptic curve over a fixed prime prime varies, J. Lond. Math. Soc., Volume 43 (1968), pp. 57-60
[2] On moments of twisted –functions (http://arxiv.org/abs/1411.4467, to appear in American J. Math.)
[3] A Remark on Solutions of the Pell Equation, Int. Math. Res. Not., Volume 2015 (2015) no. 10, pp. 2841-2855
[4] Sumsets of reciprocals in prime fields and multilinear Kloosterman sums, Izv. Math., Volume 78 (2014) no. 4, pp. 656-707 translation from Izv. Ross. Akad. Nauk. Mat. 78 (2014), no. 4, p. 656-707
[5] On character sums and -series II, Proc. Lond. Math. Soc., Volume 13 (1963), pp. 524-536
[6] An estimate of incomplete mixed character sums, An irregular mind (Bolyai Soc. Math. Stud.), Volume 21, Springer, 2010, pp. 243-250
[7] Some problems in the interface between number theory, harmonic analysis and geometry of Euclidean space, Quaest. Math., Volume 18 (1995) no. 1-3, pp. 309-323
[8] Counting sheaves using spherical codes, Math. Res. Lett., Volume 20 (2013) no. 2, pp. 305-323
[9] An inverse theorem for Gowers norms of trace functions over , Math. Proc. Camb. Philos. Soc., Volume 155 (2013) no. 2, pp. 277-295
[10] Algebraic trace functions over the primes, Duke Math. J., Volume 163 (2014) no. 9, pp. 1183-1736 (http://arxiv.org/abs/1211.6043)
[11] Algebraic twists of modular forms and Hecke orbits, Geom. Funct. Anal., Volume 25 (2015) no. 2, pp. 580-657 (http://arxiv.org/abs/1207.0617)
[12] On the exponent of distribution of the ternary divisor function, Mathematika, Volume 61 (2015) no. 1, pp. 121-144
[13] Trace functions over finite fields and their applications, Colloquium de Giorgi 2013 and 2014, Volume 5, Scuola Normale Superiore de Pisa (2015), pp. 7-35
[14] A generalization of the Pólya-Vinogradov inequality, Ramanujan J., Volume 31 (2013) no. 3, pp. 271-279
[15] MR review of “Some problems in the interface between number theory, harmonic analysis and geometry of Euclidean space” by P. Enflo MR 1340486 (96h:11079)
[16] Burgess bounds for short mixed character sums, J. Lond. Math.Soc., Volume 91 (2015) no. 3, pp. 693-708
[17] Analytic Number Theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004, xi+615 pages
[18] Gauss sums, Kloosterman sums and monodromy groups, Annals of Mathematics Studies, 116, Princeton University Press, 1988, viii+246 pages
[19] Convolution and equidistribution: Sato-Tate theorems of finite-field Mellin transforms, Annals of Mathematics Studies, 180, Princeton University Press, 2012, vi+203 pages
[20] Exponential sums and their applications, Mathematics and its Applications (Soviet Series), 80, Kluwer Academic Publishers Group, 1992, xv+209 pages
[21] Kloosterman paths and the shape of exponential sums, Compositio Math., Volume 152 (2016) no. 7, pp. 1489-1516
[22] The average distribution of cubic exponential sums, J. Reine Angew. Math., Volume 375-376 (1987), pp. 362-379
[23] The Hardy–Littlewood method., Cambridge Tracts in Mathematics, 125, Cambridge University Press, 1997, vii+232 pages
[24] Vinogradov’s mean value theorem via efficient congruencing, Ann. Math., Volume 175 (2012) no. 3, pp. 1575-1627 | DOI
Cité par Sources :