Un résultat important de Weyl nous dit que pour chaque suite de nombres entiers positifs différents la suite est équidistribuée modulo pour presque tous les réels . Dans ce cas, il est d’habitude extrêmement difficile de mesurer la vitesse de convergence de la distribution empirique vers l’équidistribution.
Dans cet article, nous étudions le cas ou est la suite des nombres entiers « méchants », donc la suite des nombres positifs la une somme de chiffres paire dans la base 2. Nous relions ce probléme aux produits trigonométriques en donnant des estimations exactes pour de tels produits et nous obtenons des estimations exactes pour la discrépance de la suite .
En plus, nous donnons des exemples concrets de réels pour lesquels nous pouvons obtenir des estimations pour la discrépance de la suite .
An important result of Weyl states that for every sequence of distinct positive integers the sequence of fractional parts of is u.d. mod 1 for almost all . However, in this general case it is usually extremely difficult to measure the speed of convergence of the empirical distribution of towards the uniform distribution. In this paper we investigate the case when is the sequence of evil numbers, that is the sequence of non-negative integers having an even sum of digits in base 2. We utilize a connection with lacunary trigonometric products , and by giving sharp metric estimates for such products we derive sharp metric estimates for exponential sums of and for the discrepancy of Furthermore, we provide some explicit examples of numbers for which we can give estimates for the discrepancy of .
Révisé le :
Accepté le :
Publié le :
Keywords: evil numbers, Thue–Morse sequence, $(n\alpha )$-sequence, discrepancy, lacunary trigonometric products
Mot clés : nombres entiers méchants, suites de Thue–Morse, suites $(n\alpha )$, discrépancie, produits trigonométriques
@article{AIF_2017__67_2_637_0, author = {Aistleitner, Christoph and Hofer, Roswitha and Larcher, Gerhard}, title = {On evil {Kronecker} sequences and lacunary trigonometric products}, journal = {Annales de l'Institut Fourier}, pages = {637--687}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {2}, year = {2017}, doi = {10.5802/aif.3094}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3094/} }
TY - JOUR AU - Aistleitner, Christoph AU - Hofer, Roswitha AU - Larcher, Gerhard TI - On evil Kronecker sequences and lacunary trigonometric products JO - Annales de l'Institut Fourier PY - 2017 SP - 637 EP - 687 VL - 67 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3094/ DO - 10.5802/aif.3094 LA - en ID - AIF_2017__67_2_637_0 ER -
%0 Journal Article %A Aistleitner, Christoph %A Hofer, Roswitha %A Larcher, Gerhard %T On evil Kronecker sequences and lacunary trigonometric products %J Annales de l'Institut Fourier %D 2017 %P 637-687 %V 67 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3094/ %R 10.5802/aif.3094 %G en %F AIF_2017__67_2_637_0
Aistleitner, Christoph; Hofer, Roswitha; Larcher, Gerhard. On evil Kronecker sequences and lacunary trigonometric products. Annales de l'Institut Fourier, Tome 67 (2017) no. 2, pp. 637-687. doi : 10.5802/aif.3094. http://archive.numdam.org/articles/10.5802/aif.3094/
[1] On the law of the iterated logarithm for the discrepancy of lacunary sequences II, Trans. Amer. Math. Soc., Volume 365 (2013) no. 7, pp. 3713-3728 | DOI
[2] GCD sums from Poisson integrals and systems of dilated functions, J. Eur. Math. Soc., Volume 17 (2015) no. 6, pp. 1517-1546 | DOI
[3] Convergence of series of dilated functions and spectral norms of GCD matrices, Acta Arith., Volume 168 (2015) no. 3, pp. 221-246 | DOI
[4] The ubiquitous Prouhet-Thue-Morse sequence, Sequences and their applications. Proceedings of the international conference, SETA ’98, Singapore, December 14–17, 1998, London: Springer, 1999, pp. 1-16
[5] Automatic sequences. Theory, applications, generalizations, Cambridge: Cambridge University Press, 2003, xvi + 571 pages | DOI
[6] Metric number theory and the large sieve, J. London Math. Soc., Volume 24 (1981) no. 1, pp. 34-40 | DOI
[7] Classical metric Diophantine approximation revisited, Analytic number theory, Cambridge Univ. Press, Cambridge, 2009, pp. 38-61
[8] The size of trigonometric and Walsh series and uniform distribution , J. London Math. Soc., Volume 50 (1994) no. 3, pp. 454-464 | DOI
[9] Sur l’approximation rationnelle des nombres de Thue-Morse-Mahler, Ann. Inst. Fourier, Volume 61 (2011) no. 5, pp. 2065-2076 | DOI
[10] Two problems in metric Diophantine approximation. I, J. Number Theory, Volume 8 (1976) no. 3, pp. 282-288 | DOI
[11] Digital nets and sequences, Cambridge University Press, Cambridge, 2010, xviii+600 pages (Discrepancy theory and quasi-Monte Carlo integration) | DOI
[12] Sequences, discrepancies and applications, Lecture Notes in Mathematics, 1651, Springer-Verlag, Berlin, 1997, xiv+503 pages
[13] Khintchine’s problem in metric Diophantine approximation, Duke Math. J., Volume 8 (1941), pp. 243-255 | DOI
[14] Sums involving common divisors, J. London Math. Soc., Volume 34 (1986) no. 1, pp. 1-11 | DOI
[15] On the problem of Dirichlet divisors in certain sequences of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat., Volume 55 (1991) no. 3, pp. 680-686
[16] On the law of the iterated logarithm. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math., Volume 17 (1955), p. 65-76, 77–84 | DOI
[17] Sur une suite egalement répartie, Studia Math., Volume 9 (1940), pp. 54-70
[18] Sommes des chiffres et nombres presque premiers, Math. Ann., Volume 305 (1996) no. 3, pp. 571-599 | DOI
[19] A central limit theorem and a metric discrepancy result for sequences with bounded gaps, Dependence in probability, analysis and number theory, Kendrick Press, Heber City, UT, 2010, pp. 233-246
[20] A metric discrepancy result for a lacunary sequence with small gaps, Monatsh. Math., Volume 162 (2011) no. 3, pp. 277-288 | DOI
[21] Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., Volume 13 (1968), pp. 259-265
[22] Metric number theory, London Mathematical Society Monographs. New Series, 18, The Clarendon Press, Oxford University Press, New York, 1998, xviii+297 pages
[23] An arithmetical mapping and applications to -results for the Riemann zeta function, Acta Arith., Volume 139 (2009) no. 4, pp. 341-367 | DOI
[24] On hybrid sequences built from Niederreiter–Halton sequences and Kronecker sequences, Bull. Austral. Math. Soc., Volume 84 (2011) no. 2, pp. 238-254 | DOI
[25] Metrical Results on the Discrepancy of Halton–Kronecker Sequences, Mathematische Zeitschrift, Volume 271 (2012) no. 1-2, pp. 1-11 | DOI
[26] Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., Volume 92 (1924), pp. 115-125 | DOI
[27] Uniform distribution of sequences, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974, xiv+390 pages
[28] Probabilistic Diophantine Approximation and the Distribution of Halton–Kronecker Sequences, J. Complexity, Volume 29 (2013) no. 6, pp. 397-423 | DOI
[29] On the frequency of small fractional parts in certain real sequences III, J. Reine Angew. Math., Volume 202 (1959), pp. 215-220
[30] On an asymptotic property of a gap sequence, Kōdai Math. Sem. Rep., Volume 2 (1950), pp. 31-32 | DOI
[31] The law of the iterated logarithms, Sci. Rep. Kanazawa Univ., Volume 7 (1961), pp. 35-39
[32] Automates finis et équirépartition modulo 1. (Finite automata and uniform distribution modulo 1), C. R. Acad. Sci., Paris, Sér. I, Volume 299 (1984), pp. 121-123
[33] Binary digit distribution over naturally defined sequences, Trans. Am. Math. Soc., Volume 213 (1975), pp. 71-78 | DOI
[34] Tractability of multivariate problems. Volume II: Standard information for functionals, EMS Tracts in Mathematics, 12, European Mathematical Society (EMS), Zürich, 2010, xviii+657 pages | DOI
[35] Limit theorems for lacunary series and uniform distribution , Acta Arith., Volume 26 (1974/75) no. 3, pp. 241-251
[36] On lacunary series with random gaps, Acta Math. Hungar., Volume 144 (2014) no. 1, pp. 150-161 | DOI
[37] Pointwise convergence of Fourier series, Lecture Notes in Mathematics, 1785, Springer-Verlag, Berlin, 2002, xviii+175 pages | DOI
[38] Constantes d’Erdős-Turán, Ramanujan J., Volume 9 (2005) no. 1-2, pp. 111-121 | DOI
[39] Simple continued fractions for some irrational numbers, J. Number Theory, Volume 11 (1979), pp. 209-217 | DOI
[40] An asymptotic property of a gap sequence, Proc. Japan Acad., Volume 38 (1962), pp. 101-104 | DOI
[41] Trigonometric series. Vol. I, II, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988, Vol. I: xiv+383 pp.; Vol. II: iv+364 pages (Reprint of the 1979 edition)
Cité par Sources :