Dans cet article, nous construisons un système d’Euler en utilisant les cycles CM sur les variétés de Kuga–Sato au-dessus de courbes de Shimura, et montrons une relation avec les valeurs centrales de fonctions de Rankin–Selberg associées aux formes modulaires de poids 2 et aux caractères de classes d’un corps quadratique imaginaire. Comme application, nous prouvons que la non-annulation des valeurs centrales de fonctions de Rankin–Selberg implique la finitude des groupes de Selmer associés à la représentation galoisienne de la forme modulaire sous certaines hypothèses.
In this article, we construct an Euler system using CM cycles on Kuga–Sato varieties over Shimura curves and show a relation with the central values of Rankin–Selberg -functions for elliptic modular forms and ring class characters of an imaginary quadratic field. As an application, we prove that the non-vanishing of the central values of Rankin–Selberg -functions implies the finiteness of Selmer groups associated to the corresponding Galois representation of modular forms under some assumptions.
Révisé le :
Accepté le :
Publié le :
Keywords: Modular forms, Selmer groups, Bloch–Kato conjecture
Mot clés : Formes modulaires, groupes de Selmer, conjecture de Bloch–Kato
@article{AIF_2017__67_3_1231_0, author = {Chida, Masataka}, title = {Selmer groups and central values of $L$-functions for modular forms}, journal = {Annales de l'Institut Fourier}, pages = {1231--1276}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {3}, year = {2017}, doi = {10.5802/aif.3108}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3108/} }
TY - JOUR AU - Chida, Masataka TI - Selmer groups and central values of $L$-functions for modular forms JO - Annales de l'Institut Fourier PY - 2017 SP - 1231 EP - 1276 VL - 67 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3108/ DO - 10.5802/aif.3108 LA - en ID - AIF_2017__67_3_1231_0 ER -
%0 Journal Article %A Chida, Masataka %T Selmer groups and central values of $L$-functions for modular forms %J Annales de l'Institut Fourier %D 2017 %P 1231-1276 %V 67 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3108/ %R 10.5802/aif.3108 %G en %F AIF_2017__67_3_1231_0
Chida, Masataka. Selmer groups and central values of $L$-functions for modular forms. Annales de l'Institut Fourier, Tome 67 (2017) no. 3, pp. 1231-1276. doi : 10.5802/aif.3108. http://archive.numdam.org/articles/10.5802/aif.3108/
[1] Heegner points on Mumford–Tate curves, Invent. Math., Volume 126 (1996) no. 3, pp. 413-456 | DOI
[2] Iwasawa’s main conjecture for elliptic curves over anticyclotonic -extensions, Ann. Math., Volume 162 (2005) no. 1, pp. 1-64 | DOI
[3] CM cycles over Shimura curves, J. Algebr. Geom., Volume 4 (1995) no. 4, pp. 659-691
[4] On the finiteness of Ш for motives associated to modular forms, Doc. Math., J. DMV, Volume 2 (1997) no. 1, pp. 31-46
[5] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. 1 (Progress in Mathematics), Volume 86, Birkhäuser, Boston, MA, 1990, pp. 333-400
[6] Quotients of group rings arising from two-dimensional representations, C. R. Acad. Sci. Paris Sér. I Math., Volume 312 (1991) no. 4, pp. 323-328
[7] Uniformisation -adique des courbes de Shimura: les théorèmes de Cerednik et de Drinfeld, Astérisque, Volume 196–197 (1991), pp. 45-158
[8] Special values of anticyclotomic -functions for modular forms (to appear in J. reine angwe. Math., available at http://dx.doi.org/10.1515/crelle-2015-0072)
[9] On the anticyclotomic Iwasawa main conjecture for modular forms, Compos. Math., Volume 151 (2015) no. 5, pp. 863-893 | DOI
[10] La fourmule de Picard–Lefschetz, SGA 7 II, Exposé XV (Lecture Notes in Mathematics), Volume 340, Springer, 1973, pp. 165-196
[11] Le formalisme des cycles evanescents, SGA 7 II, Exposé XIII (Lecture Notes in Mathematics), Volume 340, Springer, 1973, pp. 82-115
[12] The Taylor–Wiles construction and multiplicity one, Invent. Math., Volume 128 (1997) no. 2, pp. 379-391 | DOI
[13] Non-optimal levels of mod modular representations, Invent. Math., Volume 115 (1994) no. 3, pp. 435-462 | DOI
[14] Étale cohomology theory, Nankai Tracts in Mathematics, 13, World Scientific Publishing Co. Pte. Ltd., 2011, ix+611 pages
[15] On the non-vanishing mod of central -values with anticyclotomic twists for Hilbert modular forms, J. Number Theory, Volume 173 (2017), pp. 170-209 | DOI
[16] On semistable reduction and the calculation of nearby cycles, Geometric aspects of Dwork’s theory, Volume I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 785-803
[17] Derivatives of -adic -functions, Heegner cycles and monodromy modules attached to modular forms, Invent. Math., Volume 154 (2003) no. 2, pp. 333-384 | DOI
[18] Automorphic forms on , Lecture Notes in Mathematics, 114, Springer, Berlin, 1970, vii+548 pages
[19] Continuous étale cohomology, Math. Ann., Volume 280 (1988) no. 2, pp. 207-245 | DOI
[20] Mixed motives and algebraic K-theory, Lecture Notes in Mathematics, 1400, Springer, 1990, xiii+246 pages
[21] Integral Hodge theory and congruences between modular forms, Duke Math. J., Volume 80 (1995) no. 2, pp. 419-484 | DOI
[22] -adic Hodge theory and values of zeta functions of modular forms, Astérisque, Volume 295 (2004), pp. 117-290
[23] Rankin–Eisenstein classes and explicit reciprocity laws (Preprint available at http://front.math.ucdavis.edu/1503.02888, to appear in Camb. J. Math.)
[24] Rankin-Eisenstein classes in Coleman families, Res. Math. Sci., Volume 3 (2016) (Paper no 29, 53 pp., electronic only) | DOI
[25] On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields, Ann. Inst. Fourier, Volume 56 (2006) no. 3, pp. 689-733 | DOI
[26] On the vanishing of Selmer groups for elliptic curves over ring class fields, J. Number Theory, Volume 130 (2010) no. 1, pp. 128-163 | DOI
[27] Kolyvagin’s method for Chow groups and Kuga-Sato varieties, Invent. Math., Volume 107 (1992) no. 1, pp. 99-125 | DOI
[28] On the -adic height of Heegner cycles, Math. Ann., Volume 302 (1995) no. 4, pp. 609-686 | DOI
[29] -adic Abel-Jacobi maps and -adic heights, The Arithmetic and Geometry of Algebraic Cycles, (Banff, Canada, 1998) (CRM Proc. and Lect. Notes 24), Amer. Math. Soc, Providence, R.I., 2000, pp. 367-379
[30] Level raising and anticyclotomic Selmer groups for Hilbert modular forms of weight two, Can. J. Math., Volume 64 (2012) no. 3, pp. 588-668 | DOI
[31] Syntomic cohomology and -adic regulators for varieties over -adic fields, Algebra Number Theory, Volume 10 (2016) no. 8, pp. 1695-1790 | DOI
[32] On the image of -adic regulators, Invent. Math., Volume 127 (1997) no. 2, pp. 375-400 | DOI
[33] On the levels of mod Hilbert modular forms, J. Reine Angwe. Math., Volume 537 (2001), pp. 33-65
[34] Weight spectral sequences and independence of , J. Inst. Math. Jussieu, Volume 2 (2003) no. 4, pp. 583-634 | DOI
[35] Motives for modular forms, Invent. Math., Volume 100 (1990) no. 2, pp. 419-430 | DOI
[36] On the meromorphic continuation of degree two -functions, Doc. Math., J. DMV, Volume Extra Vol. (2006), pp. 729-779 (electronic)
Cité par Sources :