À partir des identités de McShane, de Mirzakhani et de Tan–Wong–Zhang, nous obtenons une identité pour les invariants de Margulis associés à une déformation affine d’une surface hyperbolique complète, orientable, à un trou. Il en découle le corollaire suivant : une déformation de la surface, dont les courbes simples fermées intérieures s’allongent infinitésimalement, doit également allonger le bord de manière infinitésimale.
We derive an identity for Margulis invariants of affine deformations of a complete orientable one-ended hyperbolic surface following the identities of McShane, Mirzakhani and Tan–Wong–Zhang. As a corollary, a deformation of the surface which infinitesimally lengthens all interior simple closed curves must infinitesimally lengthen the boundary.
Accepté le :
Publié le :
Keywords: hyperbolic surface, Margulis spacetime, closed geodesic, McShane identity
Mot clés : surface hyperbolique, espace-temps de Margulis, géodésique fermée, identité de McShane
@article{AIF_2017__67_5_2029_0, author = {Charette, Virginie and Goldman, William M.}, title = {McShane-type identities for affine deformations}, journal = {Annales de l'Institut Fourier}, pages = {2029--2041}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {5}, year = {2017}, doi = {10.5802/aif.3128}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3128/} }
TY - JOUR AU - Charette, Virginie AU - Goldman, William M. TI - McShane-type identities for affine deformations JO - Annales de l'Institut Fourier PY - 2017 SP - 2029 EP - 2041 VL - 67 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3128/ DO - 10.5802/aif.3128 LA - en ID - AIF_2017__67_5_2029_0 ER -
%0 Journal Article %A Charette, Virginie %A Goldman, William M. %T McShane-type identities for affine deformations %J Annales de l'Institut Fourier %D 2017 %P 2029-2041 %V 67 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3128/ %R 10.5802/aif.3128 %G en %F AIF_2017__67_5_2029_0
Charette, Virginie; Goldman, William M. McShane-type identities for affine deformations. Annales de l'Institut Fourier, Tome 67 (2017) no. 5, pp. 2029-2041. doi : 10.5802/aif.3128. http://archive.numdam.org/articles/10.5802/aif.3128/
[1] Properly discontinuous groups of affine transformations: a survey, Geom. Dedicata, Volume 87 (2001) no. 1-3, pp. 309-333 | DOI | MR | Zbl
[2] The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, 820, Springer, 1980, vii+144 pages | MR | Zbl
[3] Shearing coordinates and convexity of length functions on Teichmüller space, Am. J. Math., Volume 135 (2013) no. 6, pp. 1449-1476 | DOI | MR | Zbl
[4] Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, 106, Birkhäuser, 1992, xiv+454 pages | MR | Zbl
[5] Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) (London Mathematical Society Lecture Note Series), Volume 111, Cambridge University Press, 1987, pp. 3-92 | MR | Zbl
[6] Complete Lorentzian 3-manifolds, Geometry, groups and dynamics (Contemporary Mathematics), Volume 639, American Mathematical Society, 2015, pp. 43-72 | MR | Zbl
[7] Finite-sided deformation spaces of complete affine 3-manifolds, J. Topol., Volume 7 (2014) no. 1, pp. 225-246 | DOI | MR | Zbl
[8] On Schottky groups with applications to kleinian groups, Ann. Math., Volume 88 (1968), pp. 47-61 | DOI | MR | Zbl
[9] Geometry and topology of complete Lorentz spacetimes of constant curvature, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 1, pp. 1-56 | DOI | Zbl
[10] Margulis spacetimes via the arc complex, Invent. Math., Volume 204 (2016) no. 1, pp. 133-193 | DOI | MR | Zbl
[11] Lorentzian geometry, Geometry, topology and dynamics of character varieties (Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore), Volume 23, World Scientific, 2012, pp. 247-280 | DOI | MR | Zbl
[12] Three-dimensional affine crystallographic groups, Adv. Math., Volume 47 (1983) no. 1, pp. 1-49 | DOI | MR | Zbl
[13] Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987) (Contemporary Mathematics), Volume 74, American Mathematical Society, 1988, pp. 169-198 | DOI | MR | Zbl
[14] Proper affine actions and geodesic flows of hyperbolic surfaces, Ann. Math., Volume 170 (2009) no. 3, pp. 1051-1083 | DOI | MR | Zbl
[15] Geodesic Laminations and Proper Affine Actions (in preparation)
[16] Flat Lorentz 3-manifolds and cocompact Fuchsian groups, Crystallographic groups and their generalizations (Kortrijk, 1999) (Contemporary Mathematics), Volume 262, American Mathematical Society, 2000, pp. 135-145 | DOI | MR | Zbl
[17] Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math., Volume 88 (1987) no. 3, pp. 495-520 | DOI | MR | Zbl
[18] On Lorentz spacetimes of constant curvature, Geometry, groups and dynamics (Contemporary Mathematics), Volume 639, American Mathematical Society, 2015, pp. 253-269 | MR | Zbl
[19] A new identity for -characters of the once punctured torus group, Math. Res. Lett., Volume 22 (2015) no. 2, pp. 485-499 | DOI | Zbl
[20] Hyperbolic manifolds and discrete groups, Progress in Mathematics, 183, Birkhäuser, 2001, xxv+467 pages | MR | Zbl
[21] A proof of Selberg’s hypothesis, Mat. Sb., Volume 75 (117) (1968), pp. 163-168 | MR | Zbl
[22] Lectures on groups of transformations, Tata Institute of Fundamental Research Lectures on Mathematics, 32, Tata Institute of Fundamental Research, 1965, ii+97 pages | MR | Zbl
[23] Cross ratios and identities for higher Teichmüller-Thurston theory, Duke Math. J., Volume 149 (2009) no. 2, pp. 279-345 | DOI | MR | Zbl
[24] Free completely discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR, Volume 272 (1983) no. 4, pp. 785-788 | MR | Zbl
[25] Complete affine locally flat manifolds with a free fundamental group, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Volume 134 (1984), pp. 190-205 (Automorphic functions and number theory, II) | MR | Zbl
[26] Simple geodesics and a series constant over Teichmuller space, Invent. Math., Volume 132 (1998) no. 3, pp. 607-632 | DOI | MR | Zbl
[27] On the variation of a series on Teichmüller space, Pac. J. Math., Volume 231 (2007) no. 2, pp. 461-479 | DOI | MR | Zbl
[28] Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math., Volume 167 (2007) no. 1, pp. 179-222 | DOI | MR | Zbl
[29] Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann. Math., Volume 168 (2008) no. 1, pp. 97-125 | DOI | MR | Zbl
[30] Lengths of geodesics on non-orientable hyperbolic surfaces, Geom. Dedicata, Volume 134 (2008), pp. 153-176 | DOI | MR | Zbl
[31] Shortening all the simple closed geodesics on surfaces with boundary, Proc. Am. Math. Soc., Volume 138 (2010) no. 5, pp. 1775-1784 | DOI | MR | Zbl
[32] Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 68, Springer, 1972, viii+227 pages | MR | Zbl
[33] Simple curves on surfaces, Geom. Dedicata, Volume 87 (2001) no. 1-3, pp. 345-360 | DOI | MR | Zbl
[34] A simpler proof of Mirzakhani’s simple curve asymptotics, Geom. Dedicata, Volume 114 (2005), pp. 229-235 | DOI | MR | Zbl
[35] Principles of mathematical analysis, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., 1976, x+342 pages | MR | Zbl
[36] Generalizations of McShane’s identity to hyperbolic cone-surfaces, J. Differ. Geom., Volume 72 (2006) no. 1, pp. 73-112 | DOI | MR | Zbl
[37] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, 1997, x+311 pages | MR | Zbl
[38] On discrete subgroups of Lie groups I, Ann. Math., Volume 72 (1960), pp. 369-384 | DOI | MR | Zbl
[39] Remarks on the cohomology of groups, Ann. Math., Volume 80 (1964), pp. 149-157 | DOI | MR | Zbl
[40] Families of Riemann surfaces and Weil-Petersson geometry, CBMS Regional Conference Series in Mathematics, 113, American Mathematical Society, 2010, vii+118 pages | MR | Zbl
Cité par Sources :