On considère une variété
We consider compact
Accepté le :
Publié le :
Keywords:
Mot clés : fibrés vectoriel
@article{AIF_2018__68_1_101_0, author = {Brinkschulte, Judith and Hill, C. Denson}, title = {Non locally trivializable $CR$ line bundles over compact {Lorentzian} $CR$ manifolds}, journal = {Annales de l'Institut Fourier}, pages = {101--108}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {1}, year = {2018}, doi = {10.5802/aif.3152}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.3152/} }
TY - JOUR AU - Brinkschulte, Judith AU - Hill, C. Denson TI - Non locally trivializable $CR$ line bundles over compact Lorentzian $CR$ manifolds JO - Annales de l'Institut Fourier PY - 2018 SP - 101 EP - 108 VL - 68 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.3152/ DO - 10.5802/aif.3152 LA - en ID - AIF_2018__68_1_101_0 ER -
%0 Journal Article %A Brinkschulte, Judith %A Hill, C. Denson %T Non locally trivializable $CR$ line bundles over compact Lorentzian $CR$ manifolds %J Annales de l'Institut Fourier %D 2018 %P 101-108 %V 68 %N 1 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.3152/ %R 10.5802/aif.3152 %G en %F AIF_2018__68_1_101_0
Brinkschulte, Judith; Hill, C. Denson. Non locally trivializable $CR$ line bundles over compact Lorentzian $CR$ manifolds. Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 101-108. doi : 10.5802/aif.3152. https://www.numdam.org/articles/10.5802/aif.3152/
[1] On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (1981), pp. 365-404 | Zbl
[2] Obstructions to finite dimensional cohomology of abstract Cauchy-Riemann complexes, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 15 (2016), pp. 343-354 | Zbl
[3] On the nonvanishing of abstract Cauchy–Riemann cohomology groups, Math. Ann., Volume 363 (2016) no. 3-4, pp. 1701-1715 | DOI | Zbl
[4] The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, 57, Princeton University Press, 1972, viii+146 pages | Zbl
[5] Counterexamples to Newlander-Nirenberg up to the boundary, Several complex variables and complex geometry (Proceedings of Symposia in Pure Mathematics), Volume 52, American Mathematical Society, 1991, pp. 191-197 | Zbl
[6] Pseudoconcave
[7] A weak pseudoconcavity condition for abstract almost
[8] The integrability problem for
Cité par Sources :