En utilisant la géométrie paramétrique des nombres introduite récemment par W. M. Schmidt et L. Summerer et des résultats de D. Roy, nous montrons que les inégalités de transfert entre les deux exposants uniformes d’approximation diophantienne les plus classiques, établies par O. German, sont optimales. De plus, nous établissons que les exposants d’approximation uniforme en dimension sont algébriquement indépendants. Ainsi en dimension supérieure à , ils ne sont pas reliés par une relation de dépendance analogue à l’identité de Jarník.
Using the Parametric Geometry of Numbers introduced recently by W. M. Schmidt and L. Summerer and results by D. Roy, we show that German’s transference inequalities between the two most classical exponents of uniform Diophantine approximation are optimal. Further, we establish that the uniform exponents of Diophantine approximation in dimension are algebraically independent. Thus, no Jarník’s-type relation holds between them.
Révisé le :
Accepté le :
Publié le :
Keywords: Parametric geometry of numbers, Uniform exponents of Diophantine approximation, Transference inequalities.
Mot clés : Geometry paramétrique des nombres, Exposants d’approximation diophantienne uniformes, Inégalités de transfert.
@article{AIF_2018__68_1_131_0, author = {Marnat, Antoine}, title = {About {Jarn{\'\i}k{\textquoteright}s-type} relation in higher dimension}, journal = {Annales de l'Institut Fourier}, pages = {131--150}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {1}, year = {2018}, doi = {10.5802/aif.3154}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3154/} }
TY - JOUR AU - Marnat, Antoine TI - About Jarník’s-type relation in higher dimension JO - Annales de l'Institut Fourier PY - 2018 SP - 131 EP - 150 VL - 68 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3154/ DO - 10.5802/aif.3154 LA - en ID - AIF_2018__68_1_131_0 ER -
%0 Journal Article %A Marnat, Antoine %T About Jarník’s-type relation in higher dimension %J Annales de l'Institut Fourier %D 2018 %P 131-150 %V 68 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3154/ %R 10.5802/aif.3154 %G en %F AIF_2018__68_1_131_0
Marnat, Antoine. About Jarník’s-type relation in higher dimension. Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 131-150. doi : 10.5802/aif.3154. http://archive.numdam.org/articles/10.5802/aif.3154/
[1] On exponents of homogeneous and inhomogeneous diophantine approximation, Mosc. Math. J., Volume 5 (2005), pp. 747-766
[2] Exponents of Diophantine approximation, Diophantine Geometry Proceedings (Centro di Ricerca Matematica Ennio De Giorgi), Volume 4, Edizioni della Normale, 2007, pp. 101-121 | Zbl
[3] Special divergent trajectories for a homogeneous flow (2008) (Seminar of Geometry, Chicago University, http://www.math.uchicago.edu/~geometry/gt_seminar.F2008.html)
[4] Prescriptions for a diagonal flow on the space of lattices. (2015) (Diophantine Approximation and Related Topics, Aarhus, http://mjcnt.phystech.edu/conference/aarhus/abstracts/Cheung.pdf)
[5] On Diophantine exponents and Khintchine’s transference principle, Mosc. J. Comb. Number Theory, Volume 2 (2012) no. 2, pp. 22-51 | MR | Zbl
[6] Zum Khintchineschen “Übertragungssatz”, Trav. Inst. Math. Tbilissi, Volume 3 (1938), pp. 193-212
[7] Über eine Klasse linearer diophantischer Approximationen, Rend. Circ. Mat. Palermo 50 (1926), pp. 170-195 | DOI
[8] Zur metrischen Theorie der diophantischen Approximationen, Math.Z., Volume 24 (1926), pp. 706-714 | DOI
[9] On some applications of the method of the additional variable, Am. Math. Soc., Transl., Volume 1950 (1950) no. 18, 14 pages | MR
[10] Exponents of Diophantine Approximmation in Dimension Two, Canad. J. Math., Volume 61 (2009), pp. 165-189 | DOI
[11] On transfer inequalities in Diophantine approximation, Analytic number theory, Cambridge University Press, 2009, pp. 306-314 | MR
[12] Geometrie der Zahlen, Bibliotheca Mathematica Teubneriana, Band 40, Johnson Reprint Corp., New York-London, 1968, vii+256 pages | MR
[13] On Schmidt and Summerer parametric geometry of numbers, Ann. Math., Volume 182 (2015), pp. 739-786 | DOI
[14] Spectrum of the exponents of best rational approximation, Math. Z., Volume 283 (2016), pp. 143-155 | DOI
[15] On heights of algebraic subspaces and diophantine approximations, Ann. Math., Volume 85 (1967), pp. 430-472 | DOI | MR
[16] Open problems in Diophantine approximation, Diophantine approximations and transcendental numbers (Luminy, 1982) (Progr. Math.), Volume 31, Birkhäuser Boston, Boston, MA, 1983, pp. 271-287 | MR
[17] Parametric geometry of numbers and applications, Acta Arithmetica, Volume 140 (2009) no. 1, pp. 67-91 | DOI
[18] Diophantine approximation and parametric geometry of numbers, Monatsch. Math., Volume 169 (2013) no. 1, pp. 51-104 | DOI
[19] The generalization of Jarnik’s identity, Acta Arithmetica, Volume 175 (2016), pp. 119-136
Cité par Sources :