Soient une surface hyperbolique et une fonction monotone. Nous étudions l’adherence dans le fibré projectif tangent de l’ensemble des géodésiques telles que . En particulier nous montrons que si est non bornée et sous-linéaire alors la dimension de Hausdorff de cet ensemble est strictement entre et .
Suppose that is a hyperbolic surface and a monotonic function. We study the closure in the projective tangent bundle of the set of all geodesics satisfying . For instance we prove that if is unbounded and sublinear then this set has Hausdorff dimension strictly bounded between and .
Révisé le :
Accepté le :
Publié le :
Keywords: geodesics, hyperbolic surface, self-intersection, Hausdorff dimension
Mot clés : géodesiques, surfaces hyperboliques, auto-intersection, dimension de Hausdorff
@article{AIF_2018__68_1_171_0, author = {Lenzhen, Anna and Souto, Juan}, title = {Variations on a theorem of {Birman} and {Series}}, journal = {Annales de l'Institut Fourier}, pages = {171--194}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {1}, year = {2018}, doi = {10.5802/aif.3156}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3156/} }
TY - JOUR AU - Lenzhen, Anna AU - Souto, Juan TI - Variations on a theorem of Birman and Series JO - Annales de l'Institut Fourier PY - 2018 SP - 171 EP - 194 VL - 68 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3156/ DO - 10.5802/aif.3156 LA - en ID - AIF_2018__68_1_171_0 ER -
%0 Journal Article %A Lenzhen, Anna %A Souto, Juan %T Variations on a theorem of Birman and Series %J Annales de l'Institut Fourier %D 2018 %P 171-194 %V 68 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3156/ %R 10.5802/aif.3156 %G en %F AIF_2018__68_1_171_0
Lenzhen, Anna; Souto, Juan. Variations on a theorem of Birman and Series. Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 171-194. doi : 10.5802/aif.3156. http://archive.numdam.org/articles/10.5802/aif.3156/
[1] Hyperbolic structures on surfaces and geodesic currents (to appear)
[2] The Cheeger Constant, Isoperimetric Problems, and Hyperbolic Surfaces (2016) (https://arxiv.org/abs/1509.08993)
[3] Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology, Volume 24 (1985), pp. 217-225 | DOI | Zbl
[4] Bouts des variétés hyperboliques de dimension 3, Ann. Math., Volume 124 (1986), pp. 71-158 | DOI | Zbl
[5] The geometry of Teichmüller space via geodesic currents, Invent. Math., Volume 92 (1988) no. 1, pp. 39-162 | DOI | Zbl
[6] A note on the isoperimetric constant, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982), pp. 213-230 | DOI | Zbl
[7] On the period matrix of a Riemann surface of large genus, Invent. Math., Volume 117 (1994) no. 1, pp. 27-56 | DOI | Zbl
[8] Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, 9, Cambridge University Press, 1988, 105 pages | Zbl
[9] A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton University Press, 1970, pp. 195-199 | Zbl
[10] The limit set of a Fuchsian group, Acta Math., Volume 136 (1976), pp. 241-273 | DOI | Zbl
[11] Non-simple geodesics on surfaces, Stanford University (USA) (2014) (Ph. D. Thesis)
[12] The density at infinity of a discrete group of hyperbolic motions, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 171-202 | DOI | Zbl
Cité par Sources :