Nous démontrons que toute application non-constante et holomorphe entre deux espaces de modules est une application d’oubli, à condition que et .
We prove that every non-constant holomorphic map between moduli spaces of Riemann surfaces is a forgetful map, provided that and .
Révisé le :
Accepté le :
Publié le :
Keywords: Moduli spaces, holomorphic map, forgetful map
Mot clés : Espaces de modules, application holomorphe, application d’oubli
@article{AIF_2018__68_1_217_0, author = {Antonakoudis, Stergios and Aramayona, Javier and Souto, Juan}, title = {Holomorphic maps between moduli spaces}, journal = {Annales de l'Institut Fourier}, pages = {217--228}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {1}, year = {2018}, doi = {10.5802/aif.3158}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3158/} }
TY - JOUR AU - Antonakoudis, Stergios AU - Aramayona, Javier AU - Souto, Juan TI - Holomorphic maps between moduli spaces JO - Annales de l'Institut Fourier PY - 2018 SP - 217 EP - 228 VL - 68 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3158/ DO - 10.5802/aif.3158 LA - en ID - AIF_2018__68_1_217_0 ER -
%0 Journal Article %A Antonakoudis, Stergios %A Aramayona, Javier %A Souto, Juan %T Holomorphic maps between moduli spaces %J Annales de l'Institut Fourier %D 2018 %P 217-228 %V 68 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3158/ %R 10.5802/aif.3158 %G en %F AIF_2018__68_1_217_0
Antonakoudis, Stergios; Aramayona, Javier; Souto, Juan. Holomorphic maps between moduli spaces. Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 217-228. doi : 10.5802/aif.3158. http://archive.numdam.org/articles/10.5802/aif.3158/
[1] The complex analytic structure of the space of closed Riemann surfaces, Analytic functions (Princeton Mathematical Series), Volume 24, Princeton University Press, 1960, pp. 45-66 | MR | Zbl
[2] Injections of mapping class groups, Geom. Topol., Volume 13 (2009) no. 5, pp. 2523-2541 | DOI | MR | Zbl
[3] Homomorphisms between mapping class groups, Geom. Topol., Volume 16 (2012) no. 4, pp. 2285-2341 | DOI | MR | Zbl
[4] Rigidity phenomena in the mapping class group, IRMA Lectures in Mathematics and Theoretical Physics, 27, European Mathematical Society (2016), pp. 131-165 | MR | Zbl
[5] Geometry of algebraic curves. Volume II, Grundlehren der Mathematischen Wissenschaften, 268, Springer, 2011, xxx+963 pages (With a contribution by Joseph Daniel Harris) | DOI | MR | Zbl
[6] Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics, European Mathematical Society, 2006, x+172 pages | DOI | MR | Zbl
[7] Fiber spaces over Teichmüller spaces, Acta. Math., Volume 130 (1973), pp. 89-126 | DOI | MR | Zbl
[8] Finite-dimensional Teichmüller spaces and generalizations, Bull. Am. Math. Soc., Volume 5 (1981) no. 2, pp. 131-172 | DOI | MR | Zbl
[9] The automorphism group of , J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 949-968 | DOI | MR | Zbl
[10] The irreducibility of the space of curves of given genus, Publ. Math., Inst. Hautes Étud. Sci. (1969) no. 36, pp. 75-109 | DOI | MR | Zbl
[11] On holomorphic mappings between Teichmüller spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, 1974, pp. 107-124 | MR | Zbl
[12] On isometries between Teichmüller spaces, Duke Math. J., Volume 41 (1974), pp. 583-591 http://projecteuclid.org/euclid.dmj/1077310579 | DOI | MR | Zbl
[13] Harmonic mappings of Riemannian manifolds, Am. J. Math., Volume 86 (1964), pp. 109-160 | DOI | MR | Zbl
[14] A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2012, xiv+472 pages | MR | Zbl
[15] Towards the ample cone of , J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 273-294 | DOI | MR | Zbl
[16] Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1: Teichmüller theory,, Matrix Editions, 2006, xx+459 pages | MR | Zbl
[17] A finiteness theorem for holomorphic families of Riemann surfaces, Holomorphic functions and moduli, Vol. II (Berkeley, 1986) (Mathematical Sciences Research Institute Publications), Volume 11, Springer, 1988, pp. 207-219 | DOI | MR | Zbl
[18] An introduction to Teichmüller spaces, Springer, 1992, xiv+279 pages (Translated and revised from the Japanese by the authors) | DOI | MR | Zbl
[19] A cofinite universal space for proper actions for mapping class groups, In the tradition of Ahlfors-Bers. V (Contemporary Mathematics), Volume 510, American Mathematical Society, 2010, pp. 151-163 | DOI | MR | Zbl
[20] Smooth Deligne-Mumford compactifications by means of Prym level structures, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 283-293 | MR | Zbl
[21] From dynamics on surfaces to rational points on curves, Bull. Am. Math. Soc., Volume 37 (2000) no. 2, pp. 119-140 | DOI | MR | Zbl
[22] The moduli space of Riemann surfaces is Kähler hyperbolic, Ann. Math., Volume 151 (2000) no. 1, pp. 327-357 | DOI | MR | Zbl
[23] The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988, xiv+427 pages | MR | Zbl
[24] Automorphisms and isometries of Teichmüller space, Advances in the Theory of Riemann Surfaces (Stony Brook, 1969), Princeton University Press, 1971, pp. 369-383 | MR | Zbl
Cité par Sources :