Nous prouvons les résultats prédits par le programme des modèles minimaux pour des surfaces log canoniques et Q-factorielles sur des schémas excellents.
We establish the minimal model program for log canonical and Q-factorial surfaces over excellent base schemes.
Révisé le :
Accepté le :
Publié le :
Keywords: Minimal models, excellent surfaces, log canonical
Mot clés : Modèles minimaux, surfaces excellentes, log canonique
@article{AIF_2018__68_1_345_0, author = {Tanaka, Hiromu}, title = {Minimal model program for excellent surfaces}, journal = {Annales de l'Institut Fourier}, pages = {345--376}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {1}, year = {2018}, doi = {10.5802/aif.3163}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3163/} }
TY - JOUR AU - Tanaka, Hiromu TI - Minimal model program for excellent surfaces JO - Annales de l'Institut Fourier PY - 2018 SP - 345 EP - 376 VL - 68 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3163/ DO - 10.5802/aif.3163 LA - en ID - AIF_2018__68_1_345_0 ER -
%0 Journal Article %A Tanaka, Hiromu %T Minimal model program for excellent surfaces %J Annales de l'Institut Fourier %D 2018 %P 345-376 %V 68 %N 1 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3163/ %R 10.5802/aif.3163 %G en %F AIF_2018__68_1_345_0
Tanaka, Hiromu. Minimal model program for excellent surfaces. Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 345-376. doi : 10.5802/aif.3163. http://archive.numdam.org/articles/10.5802/aif.3163/
[1] Algebraic surfaces, Universitext, Springer, 2001, xii+258 pages (Translated from the 1981 Romanian original by Vladimir Maşek and revised by the author) | DOI | MR | Zbl
[2] Complex algebraic surfaces, London Mathematical Society Lecture Note Series, 68, Cambridge University Press, 1983, iv+132 pages (Translated from the French by R. Barlow, N. I. Shepherd-Barron and M. Reid) | MR | Zbl
[3] Iitaka’s conjecture for 3-folds over finite fields (2015) (https://arxiv.org/abs/1507.08760v2)
[4] On base point freeness in positive characteristic, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 5, pp. 1239-1272 | DOI | MR | Zbl
[5] Fundamental algebraic geometry: Grothendieck’s FGA explained, Mathematical Surveys and Monographs, 123, American Mathematical Society, 2005, x+339 pages | MR | Zbl
[6] Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., Volume 47 (2011) no. 3, pp. 727-789 | DOI | MR | Zbl
[7] Minimal model theory for log surfaces, Publ. Res. Inst. Math. Sci., Volume 48 (2012) no. 2, pp. 339-371 | DOI | MR | Zbl
[8] On log surfaces, Proc. Japan Acad. Ser. A, Volume 88 (2012) no. 8, pp. 109-114 | DOI | MR | Zbl
[9] On finiteness of B-representations and semi-log canonical abundance, Minimal models and extremal rays (Kyoto, 2011) (Advanced Studies in Pure Mathematics), Volume 70, Mathematical Society of Japan, 2016, pp. 361-377 | MR | Zbl
[10] Residues and duality, Lecture Notes in Mathematics, 20, Springer, 1966, vii+423 pages (with an appendix by P. Deligne) | MR | Zbl
[11] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | Zbl
[12] Introduction to the minimal model problem, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 | MR | Zbl
[13] Basepoint freeness for nef and big line bundles in positive characteristic, Ann. Math., Volume 149 (1999) no. 1, pp. 253-286 | DOI | MR | Zbl
[14] Ample filters of invertible sheaves, J. Algebra, Volume 259 (2003) no. 1, pp. 243-283 | DOI | MR | Zbl
[15] Toward a numerical theory of ampleness, Ann. Math., Volume 84 (1966), pp. 293-344 | DOI | MR | Zbl
[16] Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, 2013, x+370 pages (With a collaboration of Sándor Kovács) | DOI | MR | Zbl
[17] Birational geometry of log surfaces (preprint available at https://sites.math.washington.edu/~kovacs/pdf/BiratLogSurf.pdf)
[18] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR | Zbl
[19] Positivity in algebraic geometry. I: Classical setting: Line bundles and linear series, Springer, 2004, xviii+387 pages | Zbl
[20] Positivity in algebraic geometry. II: Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge., 49, Springer, 2004, xvii+385 pages | DOI | MR | Zbl
[21] Desingularization of two-dimensional schemes, Ann. Math., Volume 107 (1978) no. 1, pp. 151-207 | DOI | MR | Zbl
[22] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002, xvi+576 pages (Translated from the French by Reinie Erné) | MR | Zbl
[23] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, xiv+320 pages (Translated from the Japanese by M. Reid) | MR | Zbl
[24] Noncomplete algebraic surfaces, Lecture Notes in Mathematics, 857, Springer, 1981, xviii+244 pages | MR | Zbl
[25] Classification of normal surfaces, Algebraic geometry, Bowdoin 1985 (Brunswick, 1985) (Proceedings of Symposia in Pure Mathematics), Volume 46, American Mathematical Society, 1987, pp. 451-465 | MR | Zbl
[26] -adjunction, Algebra Number Theory, Volume 3 (2009) no. 8, pp. 907-950 | DOI | MR | Zbl
[27] On the behavior of test ideals under finite morphisms, J. Algebr. Geom., Volume 23 (2014) no. 3, pp. 399-443 | DOI | MR | Zbl
[28] The hyperplane sections of normal varieties, Trans. Am. Math. Soc., Volume 69 (1950), pp. 357-386 | DOI | MR | Zbl
[29] Lectures on minimal models and birational transformations of two dimensional schemes, Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Mathematics, 37, Tata Institute of Fundamental Research, 1966, iv+175 pages | MR | Zbl
[30] Minimal models and abundance for positive characteristic log surfaces, Nagoya Math. J., Volume 216 (2014), pp. 1-70 | DOI | MR | Zbl
[31] The X-method for klt surfaces in positive characteristic, J. Algebr. Geom., Volume 24 (2015) no. 4, pp. 605-628 | DOI | MR | Zbl
[32] Behavior of canonical divisors under purely inseparable base changes (2016) (https://arxiv.org/abs/1502.01381v4, to appear in J. Reine Angew. Math.)
[33] Pathologies on Mori fibre spaces in positive characteristic (2016) (https://arxiv.org/abs/1609.00574v2)
Cité par Sources :