On établit l’existence d’une infinité de métriques complètes à courbure scalaire constante dans une classe conforme prescrite sur des variétés produit non-compactes. Celles-ci incluent produits de variétés fermés à courbure scalaire constante et des espaces symétriques simplement connexes de type non-compact ou Euclidien. En particulier, , , , et , . Par conséquent, on obtient une infinité de solutions périodiques au problème de Yamabe singulier sur pour tout , l’ensemble maximal pour laquelle la non-unicité est possible. Nous montrons également que tous les groupes de Bieberbach sur sont des périodes de branches de bifurcation de solutions de Yamabe sur , , .
We establish the existence of infinitely many complete metrics with constant scalar curvature in conformal classes of certain noncompact product manifolds. These include products of closed manifolds with constant positive scalar curvature and simply-connected symmetric spaces of noncompact or Euclidean type; in particular, , , , and , . As a consequence, we obtain infinitely many periodic solutions to the singular Yamabe problem on , for all , the maximal range where nonuniqueness is possible. We also show that all Bieberbach groups in are periods of bifurcating branches of solutions to the Yamabe problem on , , .
Accepté le :
Publié le :
Keywords: Yamabe problem, singular Yamabe problem, Constant scalar curvature, nonuniqueness of solutions, Aubin’s inequality, bifurcation
Mot clés : Problème de Yamabe, problème de Yamabe singulier, courbure scalaire constante, non-unicité des solutions, inégalité de Aubin, bifurcation
@article{AIF_2018__68_2_589_0, author = {Bettiol, Renato G. and Piccione, Paolo}, title = {Infinitely many solutions to the {Yamabe} problem on noncompact manifolds}, journal = {Annales de l'Institut Fourier}, pages = {589--609}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {2}, year = {2018}, doi = {10.5802/aif.3172}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3172/} }
TY - JOUR AU - Bettiol, Renato G. AU - Piccione, Paolo TI - Infinitely many solutions to the Yamabe problem on noncompact manifolds JO - Annales de l'Institut Fourier PY - 2018 SP - 589 EP - 609 VL - 68 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3172/ DO - 10.5802/aif.3172 LA - en ID - AIF_2018__68_2_589_0 ER -
%0 Journal Article %A Bettiol, Renato G. %A Piccione, Paolo %T Infinitely many solutions to the Yamabe problem on noncompact manifolds %J Annales de l'Institut Fourier %D 2018 %P 589-609 %V 68 %N 2 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3172/ %R 10.5802/aif.3172 %G en %F AIF_2018__68_2_589_0
Bettiol, Renato G.; Piccione, Paolo. Infinitely many solutions to the Yamabe problem on noncompact manifolds. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 589-609. doi : 10.5802/aif.3172. http://archive.numdam.org/articles/10.5802/aif.3172/
[1] On Yamabe constants of Riemannian products, Commun. Anal. Geom., Volume 15 (2007) no. 5, pp. 947-969 http://projecteuclid.org/euclid.cag/1210944225 | DOI | MR | Zbl
[2] 3-manifolds with Yamabe invariant greater than that of , J. Differ. Geom., Volume 75 (2007) no. 3, pp. 359-386 http://projecteuclid.org/euclid.jdg/1175266277 | DOI | MR | Zbl
[3] Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., Volume 55 (1976) no. 3, pp. 269-296 | MR | Zbl
[4] The scalar curvature, Differential geometry and relativity (Mathematical Physics and Applied Mathematics), Volume 3, Reidel, 1976, pp. 5-18 | MR | Zbl
[5] Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer, 1998, xviii+395 pages | DOI | MR | Zbl
[6] Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds, J. Differ. Geom., Volume 27 (1988) no. 2, pp. 225-239 http://projecteuclid.org/euclid.jdg/1214441781 | DOI | MR | Zbl
[7] Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, 194, Springer, 1971, vii+251 pages | MR | Zbl
[8] Non-compactness and multiplicity results for the Yamabe problem on , J. Funct. Anal., Volume 180 (2001) no. 1, pp. 210-241 | DOI | MR | Zbl
[9] Teichmüller theory and collapse of flat manifolds (2017) (to appear in Ann. Mat. Pura Appl., http://arxiv.org/abs/1705.08431)
[10] Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres, Calc. Var. Partial Differ. Equ., Volume 47 (2013) no. 3-4, pp. 789-807 | DOI | MR | Zbl
[11] Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions, Pac. J. Math., Volume 266 (2013) no. 1, pp. 1-21 | DOI | MR | Zbl
[12] Bifurcation of periodic solutions to the singular Yamabe problem on spheres, J. Differ. Geom., Volume 103 (2016) no. 2, pp. 191-205 http://projecteuclid.org/euclid.jdg/1463404117 | DOI | MR | Zbl
[13] Compact Clifford-Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | DOI | MR | Zbl
[14] Positive solutions of Yamabe type equations on complete manifolds and applications, J. Funct. Anal., Volume 160 (1998) no. 1, pp. 176-222 | DOI | MR | Zbl
[15] A geometric proof of Bieberbach’s theorems on crystallographic groups, Enseign. Math., Volume 31 (1985) no. 1-2, pp. 137-145 | MR | Zbl
[16] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., Volume 42 (1989) no. 3, pp. 271-297 | DOI | MR | Zbl
[17] Slowly converging Yamabe flows, Geom. Topol., Volume 19 (2015) no. 3, pp. 1523-1568 | DOI | MR | Zbl
[18] Bieberbach groups and flat manifolds, Universitext, Springer, 1986, xiv+242 pages | DOI | MR | Zbl
[19] Eigenvalue comparison theorems and its geometric applications, Math. Z., Volume 143 (1975) no. 3, pp. 289-297 | DOI | MR | Zbl
[20] Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Acad. Sci., Paris, Sér. A, Volume 287 (1978) no. 4, p. A203-A208 | MR | Zbl
[21] Non-linear residually finite groups, J. Algebra, Volume 284 (2005) no. 1, pp. 174-178 | DOI | MR | Zbl
[22] The action of conformal transformations on a Riemannian manifold, Math. Ann., Volume 304 (1996) no. 2, pp. 277-291 | DOI | MR | Zbl
[23] The Yamabe equation on manifolds of bounded geometry, Commun. Anal. Geom., Volume 21 (2013) no. 5, pp. 957-978 | DOI | MR | Zbl
[24] Meilleures constantes dans le théorème d’inclusion de Sobolev et multiplicité pour les problèmes de Nirenberg et Yamabe, Indiana Univ. Math. J., Volume 41 (1992) no. 2, pp. 377-407 | DOI | MR | Zbl
[25] Isoparametric hypersurfaces and metrics of constant scalar curvature, Asian J. Math., Volume 18 (2014) no. 1, pp. 53-67 | DOI | MR | Zbl
[26] On Yamabe constants of products with hyperbolic spaces, J. Geom. Anal., Volume 25 (2015) no. 2, pp. 1387-1400 | DOI | MR | Zbl
[27] On torsion free crystallographic groups, J. Pure Appl. Algebra, Volume 74 (1991) no. 1, pp. 39-56 | DOI | MR | Zbl
[28] A counterexample to the Yamabe problem for complete noncompact manifolds, Partial differential equations (Tianjin, 1986) (Lecture Notes in Mathematics), Volume 1306, Springer, 1988, pp. 93-101 | DOI | MR | Zbl
[29] Scalar curvature of a metric with unit volume, Math. Ann., Volume 279 (1987) no. 2, pp. 253-265 | DOI | MR | Zbl
[30] The Yamabe problem, Bull. Am. Math. Soc., Volume 17 (1987) no. 1, pp. 37-91 | DOI | MR | Zbl
[31] On bifurcation of solutions of the Yamabe problem in product manifolds, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 2, pp. 261-277 | DOI | MR | Zbl
[32] Surface subgroups and subgroup separability in 3-manifold topology (Rio de Janeiro, 2005), Publicações Matemáticas do IMPA, Instituto Nacional de Matemática Pura e Aplicada (IMPA), 2005, 53 pages | MR | Zbl
[33] Regularity for the Singular Yamabe Problem, Indiana Univ. Math. J., Volume 40 (1991) no. 4, pp. 1277-1299 | DOI | MR | Zbl
[34] Conformally flat metrics of constant positive scalar curvature on subdomains of the sphere, J. Differ. Geom., Volume 34 (1991) no. 3, pp. 581-621 http://projecteuclid.org/euclid.jdg/1214447536 | DOI | MR | Zbl
[35] On the Yamabe constants of and , Differ. Geom. Appl., Volume 31 (2013) no. 2, pp. 308-319 | DOI | MR | Zbl
[36] Nonuniqueness and high energy solutions for a conformally invariant scalar equation, Commun. Anal. Geom., Volume 1 (1993) no. 3-4, pp. 347-414 | DOI | MR | Zbl
[37] Multiplicity of constant scalar curvature metrics in , Nonlinear Anal., Volume 109 (2014), pp. 103-112 | DOI | MR | Zbl
[38] Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, 149, Springer, 2006, xii+779 pages | MR | Zbl
[39] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., Volume 20 (1984) no. 2, pp. 479-495 http://projecteuclid.org/euclid.jdg/1214439291 | DOI | MR | Zbl
[40] Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in calculus of variations (Montecatini Terme, 1987) (Lecture Notes in Mathematics), Volume 1365, Springer, 1989, pp. 120-154 | DOI | MR | Zbl
[41] On the conformal and CR automorphism groups, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 464-481 | DOI | MR | Zbl
[42] Geometry of crystallographic groups, Algebra and Discrete Mathematics, 4, World Scientific, 2012, xii+195 pages | DOI | MR | Zbl
[43] Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sc. Norm. Super. Pisa, Volume 22 (1968), pp. 265-274 | MR | Zbl
[44] Local and global equivalence for flat affine manifolds with parallel geometric structures, Geom. Dedicata, Volume 2 (1973), pp. 127-132 | DOI | MR | Zbl
[45] On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., Volume 12 (1960), pp. 21-37 | MR | Zbl
Cité par Sources :