Holomorphic curves in compact Shimura varieties
[Courbes holomorphiques dans les variétés compactes de Shimura]
Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 647-659.

On démontre un analogue hyperbolique du théorème de Bloch–Ochiai sur l’adhérence de Zariski d’une courbe holomorphe dans une variété abélienne.

We prove a hyperbolic analogue of the Bloch–Ochiai theorem about the Zariski closure of holomorphic curves in abelian varieties.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3174
Classification : 14G35, 32A10, 03C64
Keywords: Shimura variety, holomorphic curve, o-minimality
Mot clés : variété de Shimura, courbes holomorphiques, o-minimalité
Ullmo, Emmanuel 1 ; Yafaev, Andrei 2

1 IHES and Universite Paris-Saclay 35 Route de Chartres, 91440 Bures-sur-Yvette (France)
2 UCL, Department of Mathematics, Gower street, WC1E 6BT, London (UK)
@article{AIF_2018__68_2_647_0,
     author = {Ullmo, Emmanuel and Yafaev, Andrei},
     title = {Holomorphic curves in compact {Shimura} varieties},
     journal = {Annales de l'Institut Fourier},
     pages = {647--659},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.5802/aif.3174},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.3174/}
}
TY  - JOUR
AU  - Ullmo, Emmanuel
AU  - Yafaev, Andrei
TI  - Holomorphic curves in compact Shimura varieties
JO  - Annales de l'Institut Fourier
PY  - 2018
SP  - 647
EP  - 659
VL  - 68
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.3174/
DO  - 10.5802/aif.3174
LA  - en
ID  - AIF_2018__68_2_647_0
ER  - 
%0 Journal Article
%A Ullmo, Emmanuel
%A Yafaev, Andrei
%T Holomorphic curves in compact Shimura varieties
%J Annales de l'Institut Fourier
%D 2018
%P 647-659
%V 68
%N 2
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.3174/
%R 10.5802/aif.3174
%G en
%F AIF_2018__68_2_647_0
Ullmo, Emmanuel; Yafaev, Andrei. Holomorphic curves in compact Shimura varieties. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 647-659. doi : 10.5802/aif.3174. http://archive.numdam.org/articles/10.5802/aif.3174/

[1] Alexander, Herbert Volumes of varieties in projective space and in Grassmannians, Trans. Am. Math. Soc., Volume 289 (1974), pp. 237-249 | DOI | Zbl

[2] Deligne, Pierre Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and L-functions (Corvallis, 1977) (Proceedings of Symposia in pure Mathematics), Volume 33, American Mathematical Society (1979), pp. 247-289 | Zbl

[3] van den Dries, Lou Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, 1998, x+180 pages | Zbl

[4] Klingler, Bruno; Ullmo, Emmanuel; Yafaev, Andrei The hyperbolic Ax-Lindemann-Weierstrass conjecture, Publ. Math., Inst. Hautes Étud. Sci., Volume 123 (2016), pp. 333-360 | DOI | Zbl

[5] Kobayashi, Shoshichi Hyperbolic Complex Spaces, Grundlehren der Mathematischen Wissenschaften, 318, Springer, 1998, xiii+471 pages | Zbl

[6] Mok, Ngaiming Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, Series in Pure Mathematics, 6, World Scientific, 1989, xiv+278 pages | Zbl

[7] Moonen, Ben Linearity properties of Shimura varieties. I., J. Algebr. Geom., Volume 7 (1998) no. 3, pp. 539-567 | Zbl

[8] Pila, Jonathan; Wilkie, Alex J. The rational points of a definable set, Duke Math. J., Volume 133 (2006) no. 3, pp. 591-616 | DOI | Zbl

[9] Ullmo, Emmanuel Applications du theorème d’Ax-Lindemann hyperbolique, Compos. Math., Volume 150 (2014) no. 2, pp. 175-190 | DOI | Zbl

[10] Ullmo, Emmanuel; Andrei, Yafaev Hyperbolic Ax-Lindemann theorem in the co-compact case, Duke Math. J., Volume 163 (2014) no. 2, pp. 433-463 | DOI | Zbl

[11] Ullmo, Emmanuel; Andrei, Yafaev o-minimal flows on abelian varieties, Q. J. Math, Volume 163 (2017) no. 2, pp. 359-367 | DOI | Zbl

Cité par Sources :