Commability of groups quasi-isometric to trees
[Commabilité des groupes quasi-isométriques à des arbres]
Annales de l'Institut Fourier, Tome 68 (2018) no. 4, pp. 1365-1398.

La commabilité est la relation d’équivalence entre groupes localement compacts la plus fine telle que G et H sont équivalents dès qu’il existe un homomorphisme GH continu, propre et d’image cocompacte. Répondant à une question de Cornulier, nous montrons que tous les groupes localement compacts non-élémentaires agissant sur des arbres simpliciaux localement finis sont commables, renforçant les formes précédentes de rigidité quasi-isométrique pour les arbres. De plus, nous montrons que 6 homomorphismes suffisent toujours, et donnons le premier exemple d’une paire de groupes localement compacts qui sont commables mais n’ayant pas de commation constituée de moins de 6 homomorphismes. Notre rigidité quasi-isométrique forte s’applique également à des produits d’espace symétriques et d’immeubles euclidiens, dont certains facteurs sont éventuellement des arbres.

Commability is the finest equivalence relation between locally compact groups such that G and H are equivalent whenever there is a continuous proper homomorphism GH with cocompact image. Answering a question of Cornulier, we show that all non-elementary locally compact groups acting geometrically on locally finite simplicial trees are commable, thereby strengthening previous forms of quasi-isometric rigidity for trees. We further show that 6 homomorphisms always suffice, and provide the first example of a pair of locally compact groups which are commable but without commation consisting of less than 6 homomorphisms. Our strong quasi-isometric rigidity also applies to products of symmetric spaces and Euclidean buildings, possibly with some factors being trees.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3190
Classification : 22D05, 20F65, 20E08, 20E42
Keywords: Commability, groups acting on trees, quasi-isometric rigidity
Mot clés : Commabilité, groupes agissant sur des arbres, rigidité quasi-isométrique
Carette, Mathieu 1

1 Université catholique de Louvain IRMP Chemin du Cyclotron 2, bte L7.01.01 1348 Louvain-la-Neuve (Belgium)
@article{AIF_2018__68_4_1365_0,
     author = {Carette, Mathieu},
     title = {Commability of groups quasi-isometric to trees},
     journal = {Annales de l'Institut Fourier},
     pages = {1365--1398},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {4},
     year = {2018},
     doi = {10.5802/aif.3190},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.3190/}
}
TY  - JOUR
AU  - Carette, Mathieu
TI  - Commability of groups quasi-isometric to trees
JO  - Annales de l'Institut Fourier
PY  - 2018
SP  - 1365
EP  - 1398
VL  - 68
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.3190/
DO  - 10.5802/aif.3190
LA  - en
ID  - AIF_2018__68_4_1365_0
ER  - 
%0 Journal Article
%A Carette, Mathieu
%T Commability of groups quasi-isometric to trees
%J Annales de l'Institut Fourier
%D 2018
%P 1365-1398
%V 68
%N 4
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.3190/
%R 10.5802/aif.3190
%G en
%F AIF_2018__68_4_1365_0
Carette, Mathieu. Commability of groups quasi-isometric to trees. Annales de l'Institut Fourier, Tome 68 (2018) no. 4, pp. 1365-1398. doi : 10.5802/aif.3190. http://archive.numdam.org/articles/10.5802/aif.3190/

[1] Bass, Hyman Covering theory for graphs of groups, J. Pure Appl. Algebra, Volume 89 (1993) no. 1-2, pp. 3-47 | DOI | MR

[2] Bass, Hyman; Kulkarni, Ravi Uniform tree lattices, J. Am. Math. Soc., Volume 3 (1990) no. 4, pp. 843-902 | DOI | MR

[3] Bass, Hyman; Lubotzky, Alexander Rigidity of group actions on locally finite trees, Proc. Lond. Math. Soc., Volume 69 (1994) no. 3, pp. 541-575 | DOI | MR

[4] Caprace, Pierre-Emmanuel; Cornulier, Yves; Monod, Nicolas; Tessera, Romain Amenable hyperbolic groups, J. Eur. Math. Soc., Volume 17 (2015) no. 11, pp. 2903-2947 | Zbl

[5] Carette, Mathieu; Dreesen, Dennis Locally compact convergence groups and n-transitive actions, Math. Z., Volume 278 (2014) no. 3-4, pp. 795-827 | DOI | MR

[6] Carette, Mathieu; Tessera, Romain Geometric rigidity and flexibility for groups acting on trees (In preparation)

[7] Cornulier, Yves Commability and focal locally compact groups, Indiana Univ. Math. J., Volume 64 (2015) no. 1, pp. 115-150 | Zbl

[8] Cornulier, Yves On the quasi-isometric classification of focal hyperbolic groups, New Directions in locally compact groups (London Mathematical Society Lecture Note Series), Volume 447, Cambridge University Press, 2018, pp. 275-342 | DOI

[9] Forester, Max Deformation and rigidity of simplicial group actions on trees, Geom. Topol., Volume 6 (2002), p. 219-267 (electronic) | DOI | MR

[10] Kleiner, Bruce; Leeb, Bernhard Induced quasi-actions: a remark, Proc. Am. Math. Soc., Volume 137 (2009) no. 5, pp. 1561-1567 | DOI | MR

[11] Mosher, Lee; Sageev, Michah; Whyte, Kevin Maximally symmetric trees, Geom. Dedicata, Volume 92 (2002), pp. 195-233 (Dedicated to John Stallings on the occasion of his 65th birthday) | DOI | MR

[12] Mosher, Lee; Sageev, Michah; Whyte, Kevin Quasi-actions on trees. I. Bounded valence, Ann. Math., Volume 158 (2003) no. 1, pp. 115-164 | DOI | MR

[13] Serre, Jean-Pierre Trees, Springer, Berlin, 1980, ix+142 pages (Translated from the French by John Stillwell) | MR

[14] Tits, Jacques Sur le groupe des automorphismes d’un arbre, Essays on topology and related topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 188-211 | MR

Cité par Sources :