Etant donné un nombre et une fonction -périodique , nous étudions la convergence de la série , appelée la transformée de Hilbert latérale relative à la rotation . Entre autres, nous démontrons que pour toute fonction non-polynomiale de classe admettant une série de Taylor–Fourier (i.e. les coefficients de Fourier sont nuls sur ), il existe un irrationnel (en réalité, un ensemble de de deuxième catégorie au sens de Baire) tel que la série diverge pour tous les . Nous démontrons aussi que pour tout irrationnel, il existe une fonction continue telle que la série diverge pour tous les . La convergence d’une série générale est aussi discutée pour divers cas où interviennent la propriété diophantienne du nombre et la régularité de la fonction .
For a given number and a -periodic function , we study the convergence of the series , called one-sided Hilbert transform relative to the rotation . Among others, we prove that for any non-polynomial function of class having Taylor–Fourier series (i.e. Fourier coefficients vanish on ), there exists an irrational number (actually a residual set of ) such that the series diverges for all . We also prove that for any irrational number , there exists a continuous function such that the series diverges for all . The convergence of general series is also discussed in different cases involving the diophantine property of the number and the regularity of the function .
Révisé le :
Accepté le :
Publié le :
Keywords: Ergodic Hilbert transform, Everywhere divergence, Irrational rotation
Mot clés : Transformée de Hilbert ergodique, Divergence partout, Rotation irrationelle
@article{AIF_2018__68_6_2477_0, author = {Fan, Aihua and Schmeling, J\"org}, title = {Everywhere divergence of one-sided ergodic {Hilbert} transform}, journal = {Annales de l'Institut Fourier}, pages = {2477--2500}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {6}, year = {2018}, doi = {10.5802/aif.3214}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3214/} }
TY - JOUR AU - Fan, Aihua AU - Schmeling, Jörg TI - Everywhere divergence of one-sided ergodic Hilbert transform JO - Annales de l'Institut Fourier PY - 2018 SP - 2477 EP - 2500 VL - 68 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3214/ DO - 10.5802/aif.3214 LA - en ID - AIF_2018__68_6_2477_0 ER -
%0 Journal Article %A Fan, Aihua %A Schmeling, Jörg %T Everywhere divergence of one-sided ergodic Hilbert transform %J Annales de l'Institut Fourier %D 2018 %P 2477-2500 %V 68 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3214/ %R 10.5802/aif.3214 %G en %F AIF_2018__68_6_2477_0
Fan, Aihua; Schmeling, Jörg. Everywhere divergence of one-sided ergodic Hilbert transform. Annales de l'Institut Fourier, Tome 68 (2018) no. 6, pp. 2477-2500. doi : 10.5802/aif.3214. http://archive.numdam.org/articles/10.5802/aif.3214/
[1] On the one-sided ergodic Hilbert transform, Ergodic theory and related fields (Contemporary Mathematics), Volume 430, American Mathematical Society, 2007, pp. 21-39 | DOI | MR
[2] On the convergence of the rotated one-sided ergodic Hilbert transform, Positivity, Volume 15 (2011) no. 2, pp. 253-270 | DOI | MR
[3] The one-sided ergodic Hilbert transform of normal contractions, Characteristic functions, scattering functions and transfer functions (Operator Theory: Advances and Applications), Volume 197, Birkhäuser, 2010, pp. 77-98 | MR
[4] On the a.s. convergence of the one-sided ergodic Hilbert transform, Ergodic Theory Dyn. Syst., Volume 29 (2009) no. 6, pp. 1781-1788 | DOI | MR
[5] Pointwise ergodic theorems with rate with applications to limit theorems for stationary processes, Stoch. Dyn., Volume 11 (2011) no. 1, pp. 135-155 | DOI | MR
[6] Study of almost everywhere convergence of series by mean of martingale methods, Stochastic Processes Appl., Volume 127 (2017) no. 8, pp. 2725-2750 | DOI | MR
[7] Ergodic theorems with arithmetical weights, Isr. J. Math., Volume 217 (2017) no. 1, pp. 139-180 | DOI | MR
[8] Some examples in ergodic theory, Proc. Lond. Math. Soc., Volume 9 (1959), pp. 227-241 | DOI | MR
[9] Almost everywhere convergence of ergodic series, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 2, pp. 490-511 | DOI | MR
[10] On series with respect to the system , Mat. Sb. (N.S.), Volume 69 (111) (1966), pp. 328-353 | MR | Zbl
[11] Spectral criteria for the existence of generalized ergodic transformations, Teor. Veroyatn. Primen., Volume 41 (1996) no. 2, pp. 251-271 | DOI | MR | Zbl
[12] On the problem of Jacobsthal, Demonstr. Math., Volume 11 (1978) no. 1, pp. 225-231 | MR | Zbl
[13] A non-homogeneous ergodic theorem, Proc. Imp. Acad., Tokyo, Volume 15 (1939), pp. 189-192 http://projecteuclid.org/euclid.pja/1195579344 | MR | Zbl
[14] Über Sequenzen ganzer Zahlen, von denen keine zu teilerfremd ist. I, II, III, Norske Vid. Selsk. Forhdl., Volume 33 (1961), p. 117-124, 125–131, 132–139 | MR | Zbl
[15] Counterexamples in ergodic theory and number theory, Math. Ann., Volume 245 (1979) no. 3, pp. 185-197 | DOI | MR
[16] Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, 50, Springer, 1970, viii+169 pages | MR | Zbl
[17] Continued fractions, University of Chicago Press, 1964, xi+95 pages | MR | Zbl
Cité par Sources :