Pappus Theorem, Schwartz Representations and Anosov Representations
Annales de l'Institut Fourier, Volume 68 (2018) no. 6, pp. 2697-2741.

In the paper Pappus’s theorem and the modular group, R. Schwartz constructed a 2-dimensional family of faithful representations ρ Θ of the modular group PSL(2,) into the group 𝒢 of projective symmetries of the projective plane via Pappus Theorem. The image of the unique index 2 subgroup PSL(2,) o of PSL(2,) under each representation ρ Θ is in the subgroup PGL(3,) of 𝒢 and preserves a topological circle in the flag variety, but ρ Θ is not Anosov. In her PhD Thesis [18, 19], V. P. Valério elucidated the Anosov-like feature of Schwartz representations: for every ρ Θ , there exists a 1-dimensional family of Anosov representations ρ Θ ε of PSL(2,) o into PGL(3,) whose limit is the restriction of ρ Θ to PSL(2,) o . In this paper, we improve her work: for each ρ Θ , we build a 2-dimensional family of Anosov representations of PSL(2,) o into PGL(3,) containing ρ Θ ε and a 1-dimensional subfamily of which can extend to representations of PSL(2,) into 𝒢. Schwartz representations are therefore, in a sense, the limits of Anosov representations of PSL(2,) into 𝒢.

Dans l’article Pappus’s theorem and the modular group R. Schwartz a montré que le Théorème de Pappus fournissait une famille à deux paramètres de représentations ρ Θ du groupe modulaire PSL(2,) dans le groupe 𝒢 de symétries projectives du plan projectif. L’image de l’unique sous-groupe PSL(2,) o d’indice 2 de PSL(2,) par chaque ρ Θ de PSL(2,) o est contenue dans le sous-groupe PGL(3,) de 𝒢 formé des transformations projectives, et préserve un cercle topologique dans la variété des drapeaux. Cependant, elles ne sont pas Anosov. Dans sa thèse [18, 19], V. P. Valério a élucidé ce comportement de type Anosov des représentations de Schwartz. Pour chaque représentation ρ Θ , il existe une famille à un paramètre (ρ Θ ε ) ε de représentations Anosov de PSL(2,) o dans PGL(3,) telles que ρ Θ 0 soit la restriction de ρ Θ à PSL(2,) o et de sorte que ρ Θ ε soit Anosov pour ε<0. Dans le présent article, nous améliorons son travail. Pour chaque représentation ρ Θ , nous construisons une famille à deux paramètres de représentations Anosov (ρ Θ λ ) λ 2 de PSL(2,) o vers PGL(3,) contenant les ρ Θ ε , ainsi qu’une sous-famille à un paramètre de représentations qui s’étendent en des représentations de PSL(2,) vers 𝒢. Ceci montre qu’en un certain sens, les représentations de Schwartz sont dans le bord de l’ensemble des représentations Anosov dans l’espace de toutes les représentations de PSL(2,) vers 𝒢.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3221
Classification: 37D20, 37D40, 20M30, 22E40, 53A20
Keywords: Pappus Theorem, modular group, group of projective symmetries, Farey triangulation, Schwartz representation, Gromov-hyperbolic group, Anosov representation, Hilbert metric
Mot clés : Théorème de Pappus, groupe modulaire, groupe de symétries projectives, triangulation de Farey, représentation de Schwatz, groupe hyperbolique au sens de Gromov, représentation Anosov, métrique de Hilbert
Barbot, Thierry 1; Lee, Gye-Seon 2; Valério, Viviane Pardini 3

1 Université d’Avignon et des Pays de Vaucluse, Laboratoire de Mathématiques Campus Jean-Henri Fabre 301 rue Baruch de Spinoza BP 21239 84916 Avignon Cedex 9 (France)
2 Mathematisches Institut, Universität Heidelberg Im Neuenheimer Feld 205 69120 Heidelberg (Germany)
3 Universidade Federal de São João del Rei Departamento de Matemática e Estatística Praça Frei Orlando, 170, Centro, CEP: 36307-352 São João del Rei, Minas Gerais (Brazil)
@article{AIF_2018__68_6_2697_0,
     author = {Barbot, Thierry and Lee, Gye-Seon and Val\'erio, Viviane Pardini},
     title = {Pappus {Theorem,} {Schwartz} {Representations}  and {Anosov} {Representations}},
     journal = {Annales de l'Institut Fourier},
     pages = {2697--2741},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {6},
     year = {2018},
     doi = {10.5802/aif.3221},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.3221/}
}
TY  - JOUR
AU  - Barbot, Thierry
AU  - Lee, Gye-Seon
AU  - Valério, Viviane Pardini
TI  - Pappus Theorem, Schwartz Representations  and Anosov Representations
JO  - Annales de l'Institut Fourier
PY  - 2018
SP  - 2697
EP  - 2741
VL  - 68
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.3221/
DO  - 10.5802/aif.3221
LA  - en
ID  - AIF_2018__68_6_2697_0
ER  - 
%0 Journal Article
%A Barbot, Thierry
%A Lee, Gye-Seon
%A Valério, Viviane Pardini
%T Pappus Theorem, Schwartz Representations  and Anosov Representations
%J Annales de l'Institut Fourier
%D 2018
%P 2697-2741
%V 68
%N 6
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.3221/
%R 10.5802/aif.3221
%G en
%F AIF_2018__68_6_2697_0
Barbot, Thierry; Lee, Gye-Seon; Valério, Viviane Pardini. Pappus Theorem, Schwartz Representations  and Anosov Representations. Annales de l'Institut Fourier, Volume 68 (2018) no. 6, pp. 2697-2741. doi : 10.5802/aif.3221. http://archive.numdam.org/articles/10.5802/aif.3221/

[1] Acosta, Miguel Character varieties for real forms (2016) (https://arxiv.org/abs/1610.05159)

[2] Barbot, Thierry Three-dimensional Anosov flag manifolds, Geom. Topol., Volume 14 (2010) no. 1, pp. 153-191 | DOI | MR

[3] Barbot, Thierry; Mérigot, Quentin Anosov AdS representations are quasi-Fuchsian, Groups Geom. Dyn., Volume 6 (2012) no. 3, pp. 441-483 | DOI | MR

[4] Barrera, Waldemar; Cano Cordero, Angel; Navarrete, Juan Pablo Pappus’ Theorem and a construction of complex Kleinian groups with rich dynamics, Bull. Braz. Math. Soc. (N.S.), Volume 45 (2014) no. 1, pp. 25-52 | DOI | MR | Zbl

[5] Bochi, Jairo; Potrie, Rafael; Sambarino, Andrés Anosov Representations and dominated splittings (2017) (https://arxiv.org/abs/1605.01742)

[6] Bridgeman, Martin; Canary, Richard; Labourie, François; Sambarino, Andrés The pressure metric for Anosov representations, Geom. Funct. Anal., Volume 25 (2015) no. 4, pp. 1089-1179 | DOI | MR

[7] Sur les groupes hyperboliques d’après Mikhael Gromov (Ghys, Étienne; de la Harpe, Pierre, eds.), Progress in Mathematics, 83, Birkhäuser, 1990, xii+285 pages (Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988) | DOI | MR | Zbl

[8] Gromov, Mikhael Hyperbolic groups, Essays in group theory (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987, pp. 75-263 | DOI | MR

[9] Guichard, Olivier; Wienhard, Anna Anosov representations: domains of discontinuity and applications, Invent. Math., Volume 190 (2012) no. 2, pp. 357-438 | DOI | MR

[10] Kapovich, Ilya; Benakli, Nadia Boundaries of hyperbolic groups, Combinatorial and geometric group theory (New York, 2000/Hoboken, 2001) (Contemporary Mathematics), Volume 296, American Mathematical Society, 2002, pp. 39-93 | DOI | MR | Zbl

[11] Katok, Svetlana; Ugarcovici, Ilie Symbolic dynamics for the modular surface and beyond, Bull. Am. Math. Soc., Volume 44 (2007) no. 1, pp. 87-132 | DOI | MR

[12] Labourie, François Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114 | DOI | MR

[13] Lawton, Sean Generators, relations and symmetries in pairs of 3×3 unimodular matrices, J. Algebra, Volume 313 (2007) no. 2, pp. 782-801 | DOI | MR

[14] Marquis, Ludovic Around groups in Hilbert geometry, Handbook of Hilbert geometry (IRMA Lectures in Mathematics and Theoretical Physics), Volume 22, European Mathematical Society, 2014, pp. 207-261 | MR

[15] Morier-Genoud, Sophie; Ovsienko, Valentin; Tabachnikov, Serge SL 2 ()-tilings of the torus, Coxeter-Conway friezes and Farey triangulations, Enseign. Math., Volume 61 (2015) no. 1-2, pp. 71-92 | DOI | MR | Zbl

[16] Orenstein, Paulo A métrica de Hilbert e aplicações (2009) (Scientic initiation work–Departamento de Matematica - PUC-Rio, http://www.mat.uc.cl/jairo.bochi/docs/hilbert.pdf)

[17] Schwartz, Richard Pappus’s theorem and the modular group, Publ. Math., Inst. Hautes Étud. Sci., Volume 78 (1993), pp. 187-206 | MR | Zbl

[18] Valério, Viviane Pardini On the Anosov character of the Pappus-Schwartz representations, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 10, pp. 1037-1041 | Zbl

[19] Valério, Viviane Pardini Teorema de Pappus, Representações de Schwartz e Representações Anosov, Federal University of Minas Gerais (Brazil) (2016) (Ph. D. Thesis http://www.mat.ufmg.br/intranet-atual/pgmat/tesesdissertacoes/uploaded/tese68.pdf)

Cited by Sources: