Nous donnons des conditions pour que certaines fonctions analytiques plurisousharmoniques exhaustives sur des variétés faiblement 1-complètes qui sont des fibrés en droites affines au dessus de surfaces de Riemann soient extensibles à des familles analytiques de fonctions plurisousharmoniques exhaustives. Un exemple de famille non-extensible est également présenté.
For a class of weakly 1-complete bundles over compact Riemann surfaces, for which canonical plurisubharmonic exhaustion functions on the total spaces are known, some cases are described where such functions can be extended to a plurisubharmonic exhaustion function on analytic families of the bundles. The nonextendable cases are also discussed.
Keywords: plurisubharmonic functions, pseudoconvexity
Mot clés : fonctions plurisousharmoniques, pseudoconvexité
@article{AIF_2018__68_7_2811_0, author = {Ohsawa, Takeo}, title = {On the local pseudoconvexity of certain analytic families of $\protect \mathbb{C}$}, journal = {Annales de l'Institut Fourier}, pages = {2811--2818}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {7}, year = {2018}, doi = {10.5802/aif.3226}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.3226/} }
TY - JOUR AU - Ohsawa, Takeo TI - On the local pseudoconvexity of certain analytic families of $\protect \mathbb{C}$ JO - Annales de l'Institut Fourier PY - 2018 SP - 2811 EP - 2818 VL - 68 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3226/ DO - 10.5802/aif.3226 LA - en ID - AIF_2018__68_7_2811_0 ER -
%0 Journal Article %A Ohsawa, Takeo %T On the local pseudoconvexity of certain analytic families of $\protect \mathbb{C}$ %J Annales de l'Institut Fourier %D 2018 %P 2811-2818 %V 68 %N 7 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3226/ %R 10.5802/aif.3226 %G en %F AIF_2018__68_7_2811_0
Ohsawa, Takeo. On the local pseudoconvexity of certain analytic families of $\protect \mathbb{C}$. Annales de l'Institut Fourier, Tome 68 (2018) no. 7, pp. 2811-2818. doi : 10.5802/aif.3226. http://archive.numdam.org/articles/10.5802/aif.3226/
[1] Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 193-259 | Zbl
[2] Oka’s Heftungslemma and the Levi problem for complex spaces, Trans. Am. Math. Soc., Volume 111 (1964), pp. 345-366 | Zbl
[3] Entwicklung analytischer Funktionen auf Riemannschen Flächen, Math. Ann., Volume 120 (1949), pp. 430-461 | Zbl
[4] Sur quelques progrès dans la théorie des fonctions analytiques de variables complexes entre 1930 et 1950, Miscellanea mathematica, Springer, 1991, pp. 45-58 | Zbl
[5] Un exemple de fibré holomorphe non de Stein à fibre ayant pour base le disque ou le plan, Invent. Math., Volume 48 (1978), pp. 293-302 | Zbl
[6] A smooth pseudoconvex domain without pseudoconvex exhaustion, Manuscr. Math., Volume 39 (1982), pp. 119-123 | Zbl
[7] A Levi problem on two-dimensional complex manifolds, Math. Ann., Volume 261 (1982), pp. 255-261 | Zbl
[8] Harmonic mappings and disc bundles over compact Kähler manifolds, Publ. Res. Inst. Math. Sci., Volume 21 (1985), pp. 819-833 | Zbl
[9] 2 dimensional counterexamples to generalizations of the Levi problem, Math. Ann., Volume 230 (1977), pp. 169-173 | Zbl
[10] A counterexample for the Levi problem for branched Riemann domains over , Math. Ann., Volume 234 (1978), pp. 275-277 | Zbl
[11] Domaines sans point critique intérieur sur l’espace projectif complexe, J. Math. Soc. Japan, Volume 15 (1963), pp. 443-473 | Zbl
[12] On Levi’s problem and the imbedding of real-analytic manifolds, Ann. Math., Volume 68 (1958), pp. 460-472 | Zbl
[13] Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z., Volume 81 (1963), pp. 377-391 | Zbl
[14] The methods of the theory of functions of several complex variables, Miscellanea mathematica, Springer, 1991, pp. 129-143 | Zbl
[15] Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier, Volume 25 (1975) no. 1, pp. 215-235 | Zbl
[16] Quotients of bounded homogeneous domains by cyclic groups, Osaka J. Math., Volume 47 (2010) no. 2, pp. 331-352 | Zbl
[17] Vanishing theorems for weakly 1-complete manifolds, Number theory, algebraic geometry and commutative algebra in honor of Yasuo Akizuki, Kinokuniya Book-Store Co., 1973, pp. 169-179 | Zbl
[18] Stein domains with Levi-flat boundaries on compact complex surfaces, Mat. Zametki, Volume 66 (1999), pp. 632-635 translation in Math. Notes 66 (1999), no. 3-4, p. 522-525
[19] A Stein domain with smooth boundary which has a product structure, Publ. Res. Inst. Math. Sci., Volume 18 (1982) no. 3, pp. 1185-1186 | Zbl
[20] Completeness of noncompact analytic spaces, Publ. Res. Inst. Math. Sci., Volume 20 (1984), pp. 683-692 | Zbl
[21] On the extension of holomorphic functions. V: Effect of generalization, Nagoya Math. J., Volume 161 (2001), pp. 1-21 erratum in ibid. 163 (2001), p. 229 | Zbl
[22] Stability of pseudoconvexity of disc bundles over compact Riemann surfaces and application to a family of Galois coverings, Int. J. Math., Volume 26 (2015) no. 4, 1540003, 7 pages (Art. ID 1540003, 7 p.) | DOI | Zbl
[23] Sur les fonctions analytiques de plusieurs variables VI. Domaines pseudoconvexes, Tôhoku Math. J., Volume 49 (1942), pp. 15-52 | Zbl
[24] Sur les fonctions analytiques de plusieurs variables IX. Domaines finis sans point critique intérieur, Jap. J. Math., Volume 23 (1953), pp. 97-155 | Zbl
[25] Fibrés holomorphes à base et à fibre de Stein, Invent. Math., Volume 43 (1977), pp. 97-107 | Zbl
[26] Adjoint linear series on weakly 1-complete Kähler manifolds. I. Global projective embedding, Math. Ann., Volume 311 (1998) no. 3, pp. 501-531 | Zbl
[27] The Levi problem and the structure theorem for non-negatively curved complete Kähler manifolds, J. Reine Angew. Math., Volume 504 (1998), pp. 139-157 | Zbl
[28] Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan, Volume 16 (1964), pp. 159-181 | Zbl
[29] Modifications continues des variétés de Stein, Publ. Res. Inst. Math. Sci., Volume 13 (1977), pp. 681-686 | Zbl
[30] Pseudoconvex domains over Grassmann manifolds, J. Math. Kyoto Univ., Volume 20 (1980), pp. 391-394 | Zbl
[31] On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ., Volume 22 (1982), pp. 583-607 | Zbl
Cité par Sources :