Nous étudions l’ensemble des seuils log-canoniques (ou indices d’intégrabilité critiques) des germes de fonctions holomorphes (resp. réel analytiques) dans
We study the set of log-canonical thresholds (or critical integrability indices) of holomorphic (resp. real analytic) function germs in
Keywords: Resolution of singularities, log-canonical threshold, ascending chain condition
Mot clés : Résolution des singularités, seuil log-canonique, condition de chaîne ascendante
@article{AIF_2018__68_7_2883_0, author = {Collins, Tristan C.}, title = {Log-canonical thresholds in real and complex dimension~2}, journal = {Annales de l'Institut Fourier}, pages = {2883--2900}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {7}, year = {2018}, doi = {10.5802/aif.3229}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.3229/} }
TY - JOUR AU - Collins, Tristan C. TI - Log-canonical thresholds in real and complex dimension 2 JO - Annales de l'Institut Fourier PY - 2018 SP - 2883 EP - 2900 VL - 68 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.3229/ DO - 10.5802/aif.3229 LA - en ID - AIF_2018__68_7_2883_0 ER -
%0 Journal Article %A Collins, Tristan C. %T Log-canonical thresholds in real and complex dimension 2 %J Annales de l'Institut Fourier %D 2018 %P 2883-2900 %V 68 %N 7 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.3229/ %R 10.5802/aif.3229 %G en %F AIF_2018__68_7_2883_0
Collins, Tristan C. Log-canonical thresholds in real and complex dimension 2. Annales de l'Institut Fourier, Tome 68 (2018) no. 7, pp. 2883-2900. doi : 10.5802/aif.3229. https://www.numdam.org/articles/10.5802/aif.3229/
[1] Two-dimensional terminations, Duke Math. J., Volume 69 (1993) no. 3, pp. 527-545 | Zbl
[2] On the log-canonical threshold for germs of plane curves, Singularities I. Algebraic and analytic aspects (Contemporary Mathematics), Volume 474, American Mathematical Society, 2008, pp. 1-14 | Zbl
[3] Kähler-Einstein metrics, canonical random point processes and birational geometry (2016) (https://arxiv.org/abs/1307.3634)
[4] Semianalytic and subanalytic sets, Publ. Math., Inst. Hautes Étud. Sci., Volume 67 (1988), pp. 5-42 | Zbl
[5] Arc-analytic functions, Invent. Math., Volume 101 (1990) no. 2, pp. 411-424 | Zbl
[6] A multi-dimensional resolution of singularities with applications to analysis, Am. J. Math., Volume 135 (2013) no. 5, pp. 1179-1252 | Zbl
[7] Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér., Volume 34 (2001) no. 4, pp. 525-556 | Zbl
[8] Caractéristiques d’Euler-Poincaré, fonctions zêta locales et modifications analytiques, J. Am. Math. Soc., Volume 5 (1992) no. 4, pp. 705-720 | Zbl
[9] Valuations and multiplier ideals, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 655-684 | Zbl
[10] Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties, Duke Math. J., Volume 152 (2010) no. 1, pp. 93-114 | Zbl
[11] Limits of log-canonical thresholds, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009) no. 3, pp. 493-517 | Zbl
[12] Oscillatory integral decay, sublevel set growth, and the Newton polyhedron, Math. Ann., Volume 346 (2010) no. 4, pp. 857-895 | Zbl
[13] ACC for log canonical thresholds, Ann. Math., Volume 180 (2014) no. 2, pp. 523-571 | Zbl
[14] The log canonical threshold of holomorphic functions, Int. J. Math., Volume 23 (2012) no. 11, 1250115, 8 pages (Art. ID 1250115, 8 p.) | Zbl
[15] On the first terms of certain asymptotic expansions, Complex analysis and algebraic geometry, Iwanami Shoten, 1977, pp. 357-368 | Zbl
[16] Flips and Abundance for Algebraic Threefolds (Kollár, János, ed.), Astérisque, 211, Société Mathématique de France, 1992, 258 pages | Zbl
[17] Singularities of pairs, Algebraic geometry (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 221-285 | Zbl
[18] Lectures on resolution of singularities, Annals of Mathematics Studies, 166, Princeton University Press, 2007, vi+208 pages | Zbl
[19] Which powers of holomorphic functions are integrable? (2008) (https://arxiv.org/abs/0805.0756)
[20] On the log canonical thresholds of reducible plane curves, Am. J. Math., Volume 121 (1999) no. 4, pp. 701-721 | Zbl
[21] Ideal-theoretic strategies for asymptotic approximation of marginal likelihood integrals, J. Algebra, Volume 8 (2017) no. 1, pp. 22-55 | Zbl
[22] Antichains of monomial ideals are finite, Proc. Am. Math. Soc., Volume 129 (2001), pp. 1609-1615 | Zbl
[23] Subanalytic functions, Trans. Am. Math. Soc., Volume 344 (1994) no. 2, pp. 583-595 | Zbl
[24] On the preparation theorem for subanalytic functions, New developments in singularity theory (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 21, Kluwer Academic Publishers, 2001, pp. 193-215 | Zbl
[25] The Newton polyhedron and oscillatory integral operators, Acta Math., Volume 179 (1997) no. 1, pp. 105-152 | Zbl
[26] On the growth and stability of real-analytic functions, Am. J. Math., Volume 121 (1999) no. 3, pp. 519-554 | Zbl
[27] Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. Math., Volume 152 (2000) no. 1, pp. 277-329 | Zbl
[28] On a conjecture of Demailly and Kollár, Asian J. Math., Volume 4 (2000) no. 1, pp. 221-226 | Zbl
[29] Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 56 (1992), pp. 105-203
[30] 3-fold log flips, Russ. Acad. Sci., Izv., Math., Volume 40 (1993) no. 1, pp. 95-202 | Zbl
[31] The existence of Kähler-Einstein metrics on manifolds with positive anticanonical bundle and suitable finite symmetry group, Ann. Math., Volume 127 (1987) no. 3, pp. 585-627 | Zbl
[32] On Kähler-Einstein metrics on certain manifolds with
[33] On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., Volume 101 (1992) no. 1, pp. 101-172 | Zbl
[34] Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Mathematical aspects of string theory (Advanced Series in Mathematical Physics), Volume 1, World Scientific, 1986, pp. 574-628 | Zbl
[35] Complete Kähler manifolds with zero Ricci curvature II, Invent. Math., Volume 106 (1991) no. 1, pp. 27-60 | Zbl
[36] Newton polyhedra and estimates of oscillatory integrals, Funkts. Anal. Prilozh., Volume 10 (1976) no. 3, pp. 13-38
- ACC conjecture for the weighted log canonical thresholds in dimension two, Archiv der Mathematik, Volume 121 (2023) no. 3, p. 245 | DOI:10.1007/s00013-023-01889-4
Cité par 1 document. Sources : Crossref