Nous étudions les différentes notions de sémipositivité pour les classes de cohomologie
We study the different notions of semipositivity for
DOI : 10.5802/aif.3234
Keywords: K3 surfaces, (1, 1) cohomology classes, smooth semipositive representatives
Mot clés : surfaces K3, classes de cohomologie (1, 1), représentants lisses semi-positifs
@article{AIF_2018__68_7_2981_0, author = {Filip, Simion and Tosatti, Valentino}, title = {Smooth and {Rough} {Positive} {Currents}}, journal = {Annales de l'Institut Fourier}, pages = {2981--2999}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {7}, year = {2018}, doi = {10.5802/aif.3234}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.3234/} }
TY - JOUR AU - Filip, Simion AU - Tosatti, Valentino TI - Smooth and Rough Positive Currents JO - Annales de l'Institut Fourier PY - 2018 SP - 2981 EP - 2999 VL - 68 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.3234/ DO - 10.5802/aif.3234 LA - en ID - AIF_2018__68_7_2981_0 ER -
%0 Journal Article %A Filip, Simion %A Tosatti, Valentino %T Smooth and Rough Positive Currents %J Annales de l'Institut Fourier %D 2018 %P 2981-2999 %V 68 %N 7 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.3234/ %R 10.5802/aif.3234 %G en %F AIF_2018__68_7_2981_0
Filip, Simion; Tosatti, Valentino. Smooth and Rough Positive Currents. Annales de l'Institut Fourier, Tome 68 (2018) no. 7, pp. 2981-2999. doi : 10.5802/aif.3234. https://www.numdam.org/articles/10.5802/aif.3234/
[1] Some numerical criteria for contractability of curves on algebraic surfaces, Am. J. Math., Volume 84 (1962), pp. 485-496 | DOI | MR
[2] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4, Springer, 2004, xii+436 pages | DOI | MR
[3] Polynomial diffeomorphisms of
[4] The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | DOI | MR
[5] Fine topology, Šilov boundary, and
[6] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR
[7] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | MR
[8] Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | MR
[9] Dynamique des automorphismes des surfaces complexes compactes, École Normale Superieure de Lyon (France) (1999) (Ph. D. Thesis)
[10] Dynamique des automorphismes des surfaces
[11] Automorphisms of surfaces: Kummer rigidity and measure of maximal entropy (2015) (https://hal.archives-ouvertes.fr/hal-01071491)
[12] Kähler currents and null loci, Invent. Math., Volume 202 (2015) no. 3, pp. 1167-1198 | DOI | MR
[13] Complex Analytic and Differential Geometry (https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)
[14] Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. Fr., Nouv. Sér. (1985) no. 19, 124 pages (124 p.) | DOI | MR | Zbl
[15] Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR
[16] Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Mathematics), Volume 1507, Springer, 1992, pp. 87-104 | DOI | MR
[17] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., Volume 159 (2004) no. 3, pp. 1247-1274 | DOI | MR
[18] Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR
[19] Regularity of dynamical Green’s functions, Trans. Am. Math. Soc., Volume 361 (2009) no. 9, pp. 4783-4805 | DOI | MR
[20] Pluripotential estimates on compact Hermitian manifolds, Advances in geometric analysis (Advanced Lectures in Mathematics (ALM)), Volume 21, International Press, 2012, pp. 69-86 | MR | Zbl
[21] Green currents for holomorphic automorphisms of compact Kähler manifolds, J. Am. Math. Soc., Volume 18 (2005) no. 2, pp. 291-312 | DOI | MR
[22] Rigidity of Julia sets for Hénon type maps, J. Mod. Dyn., Volume 8 (2014) no. 3-4, pp. 499-548 | DOI | MR
[23] Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer, 1969, xiv+676 pages | DOI | MR
[24] Kummer rigidity for K3 surface automorphisms via Ricci-flat metrics (2018) (https://arxiv.org/abs/1808.08673)
[25] Complex dynamics in higher dimensions, Complex potential theory (Montreal, 1993) (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 439, Kluwer Academic Publishers, 1994, pp. 131-186 (Notes partially written by Estela A. Gavosto) | DOI | MR | Zbl
[26] Kählerian normal complex surfaces, Tôhoku Math. J., Volume 35 (1983) no. 1, pp. 101-117 | DOI | MR
[27] Semipositive line bundles, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 30 (1983) no. 2, pp. 353-378 | MR
[28] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | DOI | MR
[29] On the entropy of holomorphic maps, Enseign. Math., Volume 49 (2003) no. 3-4, pp. 217-235 | DOI | MR | Zbl
[30] Collapsing of abelian fibered Calabi-Yau manifolds, Duke Math. J., Volume 162 (2013) no. 3, pp. 517-551 | DOI | MR
[31] Remarks on the collapsing of torus fibered Calabi-Yau manifolds, Bull. Lond. Math. Soc., Volume 47 (2015) no. 6, pp. 1021-1027 | DOI | MR
[32] Adjoint
[33] Minimal models for Kähler threefolds, Invent. Math., Volume 203 (2016) no. 1, pp. 217-264 | DOI | MR
[34] Introduction to the minimal model problem, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 http://faculty.ms.u-tokyo.ac.jp/~kawamata/kmm.pdf | MR
[35] On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated, Ann. Inst. Fourier, Volume 65 (2015) no. 5, pp. 1953-1967 | DOI | MR
[36] Le cône kählérien d’une surface, J. Math. Pures Appl., Volume 78 (1999) no. 3, pp. 249-263 | DOI | MR | Zbl
[37] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004, xviii+387 pages | DOI | MR
[38] Nef line bundles on Calabi-Yau threefolds, I (2018) (https://arxiv.org/abs/1601.01273)
[39] The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. Math., Volume 122 (1985) no. 3, pp. 509-539 | DOI | MR | Zbl
[40] The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. Math., Volume 122 (1985) no. 3, pp. 540-574 | DOI | MR
[41] Dynamics on
[42] Singular Kählerian spaces, Manifolds (Tokyo, 1973), University of Tokyo Press, 1975, pp. 343-351 | MR
[43] Chapters on algebraic surfaces, Complex algebraic geometry (Park City, 1993) (IAS/Park City Mathematics Series), Volume 3, American Mathematical Society, 1997, pp. 3-159 | MR | Zbl
[44] Limits of Calabi-Yau metrics when the Kähler class degenerates, J. Eur. Math. Soc., Volume 11 (2009) no. 4, pp. 755-776 | DOI | MR
[45] Degenerations of Calabi-Yau metrics, Acta Phys. Polon. B Proc. Suppl., Volume 4 (2011) no. 3, pp. 495-505 | DOI
[46] Calabi-Yau manifolds and their degenerations, Ann. N.Y. Acad. Sci., Volume 1260 (2012) no. 1, pp. 8-13 | DOI
[47] KAWA lecture notes on the Kähler-Ricci flow, Ann. Fac. Sci. Toulouse, Math., Volume 27 (2018) no. 2, pp. 285-376 | DOI
[48] Nakamaye’s theorem on complex manifolds, Algebraic geometry (Salt Lake City, 2015). Part 1 (Proceedings of Symposia in Pure Mathematics), Volume 97.1, American Mathematical Society, 2018, pp. 633-655 | DOI
[49] The Chern-Ricci flow on complex surfaces, Compos. Math., Volume 149 (2013) no. 12, pp. 2101-2138 | DOI | MR
[50] The Kähler-Ricci flow, Ricci-flat metrics and collapsing limits, Am. J. Math., Volume 140 (2018) no. 3, pp. 653-698 | DOI | Zbl
[51] Finite time collapsing of the Kähler-Ricci flow on threefolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (2018) no. 1, pp. 105-118 | DOI | Zbl
[52] The Kähler cone on Calabi-Yau threefolds, Invent. Math., Volume 107 (1992) no. 3, pp. 561-583 | DOI | MR | Zbl
[53] Volume growth and entropy, Isr. J. Math., Volume 57 (1987) no. 3, pp. 285-300 | DOI | MR | Zbl
[54] The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. Math., Volume 76 (1962), pp. 560-615 | DOI | MR
Cité par Sources :