Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions
[Théorème nodal de Pleijel pour les fonctions propres de Neumann et de Robin]
Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 283-301.

Nous montrons que le cas d’égalité dans le théorème de Courant n’est réalisé que pour un nombre fini de valeurs propres du laplacien de Neumann, dans un ouvert borné connexe de n à bord C 1,1 , lorsque n2. Ce résultat est analogue au théorème démontré par Pleijel en 1956 pour le laplacien de Dirichlet. Nous montrons de plus que la méthode de démonstration et le résultat peuvent être étendus à une classe de conditions au bord de Robin.

We show that equality in Courant’s nodal domain theorem can only be reached for a finite number of eigenvalues of the Neumann Laplacian, in an open, bounded, and connected subset of n with a C 1,1 boundary, when n2. This result is analogous to the theorem proved by Pleijel in 1956 for the Dirichlet Laplacian. We also show that the argument and the result extend to a class of Robin boundary conditions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/aif.3243
Classification : 35P05,  35P15,  35P20,  58J50
Mots clés : valeurs propres de Neumann, valeurs propres de Robin, domaines nodaux, théorème de Courant, théorème de Pleijel
@article{AIF_2019__69_1_283_0,
     author = {L\'ena, Corentin},
     title = {Pleijel{\textquoteright}s nodal domain theorem for Neumann and Robin eigenfunctions},
     journal = {Annales de l'Institut Fourier},
     pages = {283--301},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.5802/aif.3243},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.3243/}
}
Léna, Corentin. Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 283-301. doi : 10.5802/aif.3243. http://archive.numdam.org/articles/10.5802/aif.3243/

[1] Bérard, Pierre; Helffer, Bernard The weak Pleijel theorem with geometric control, J. Spectr. Theory, Volume 6 (2016) no. 4, pp. 717-733 | Article | MR 3584180 | Zbl 1372.35194

[2] Bérard, Pierre; Meyer, Daniel Inégalités isopérimétriques et applications, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982) no. 3, pp. 513-541 | Article | MR 690651 | Zbl 0527.35020

[3] van den Berg, Michiel; Gittins, Katie On the number of Courant-sharp Dirichlet eigenvalues, J. Spectr. Theory, Volume 6 (2016) no. 4, pp. 735-745 | Article | MR 3584181 | Zbl 1372.35197

[4] Bonnaillie-Noël, Virginie; Helffer, Bernard Nodal and spectral minimal partitions – the state of the art in 2016, Shape optimization and spectral theory, De Gruyter, 2017, pp. 353-397 | MR 3681154 | Zbl 1373.49050

[5] Bourgain, Jean On Pleijel’s nodal domain theorem, Int. Math. Res. Not. (2015) no. 6, pp. 1601-1612 | MR 3340367 | Zbl 1317.35145

[6] Charron, Philippe A Pleijel-type theorem for the quantum harmonic oscillator, J. Spectr. Theory, Volume 8 (2018) no. 2, pp. 715-732 | Article | MR 3812813 | Zbl 06898063

[7] Charron, Philippe; Helffer, Bernard; Hoffmann-Ostenhof, Thomas Pleijel’s theorem for Schrödinger operators with radial potentials, Ann. Math. Qué., Volume 42 (2018) no. 1, pp. 7-29 | Article | Zbl 1384.35048

[8] Courant, Richard Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke, Gött. Nachr., Volume 1923 (1923), pp. 81-84 | Zbl 49.0342.01

[9] Courant, Richard; Hilbert, David Methods of mathematical physics. Vol. I, Interscience Publishers, 1953, xv+561 pages | MR 0065391 | Zbl 0051.28802

[10] Donnelly, Harold Counting nodal domains in Riemannian manifolds, Ann. Global Anal. Geom., Volume 46 (2014) no. 1, pp. 57-61 | Article | MR 3205801 | Zbl 1296.58018

[11] Grisvard, Pierre Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24, Pitman Publishing Inc., 1985, xiv+410 pages | MR 775683 | Zbl 0695.35060

[12] Hardt, Robert; Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas; Nadirashvili, Nikolai Critical sets of solutions to elliptic equations, J. Differ. Geom., Volume 51 (1999) no. 2, pp. 359-373 http://projecteuclid.org/euclid.jdg/1214425070 | Article | MR 1728303 | Zbl 1144.35370

[13] Helffer, Bernard; Hoffmann-Ostenhof, Thomas A review on large k minimal spectral k-partitions and Pleijel’s theorem, Spectral theory and partial differential equations (Contemporary Mathematics), Volume 640, American Mathematical Society, 2015, pp. 39-57 | Article | MR 3381015 | Zbl 1346.35132

[14] Helffer, Bernard; Hoffmann-Ostenhof, Thomas; Terracini, Susanna Nodal domains and spectral minimal partitions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 1, pp. 101-138 | Article | MR 2483815

[15] Helffer, Bernard; Persson Sundqvist, Mikael On nodal domains in Euclidean balls, Proc. Am. Math. Soc., Volume 144 (2016) no. 11, pp. 4777-4791 | Article | MR 3544529 | Zbl 1362.35200

[16] Henrot, Antoine Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser, 2006, x+202 pages | MR 2251558 | Zbl 1109.35081

[17] Peetre, Jaak A generalization of Courant’s nodal domain theorem, Math. Scand., Volume 5 (1957), pp. 15-20 | Article | MR 0092917 | Zbl 0077.30101

[18] Pleijel, Åke Remarks on Courant’s nodal line theorem, Commun. Pure Appl. Math., Volume 9 (1956), pp. 543-550 | Article | MR 0080861 | Zbl 0070.32604

[19] Polterovich, Iosif Pleijel’s nodal domain theorem for free membranes, Proc. Am. Math. Soc., Volume 137 (2009) no. 3, pp. 1021-1024 | Article | MR 2457442 | Zbl 1162.35005

[20] Reed, Michael; Simon, Barry Methods of Modern Mathematical physics. II. Fourier Analysis, Self-Adjointness, Academic Press, 1975, xv+361 pages | MR 0493420 | Zbl 0308.47002

[21] Reed, Michael; Simon, Barry Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, 1978, xv+396 pages | MR 0493421 | Zbl 0401.47001

[22] Rozenblum, G. V.; Shubin, Mikhail A.; Solomyak, Mikhaĭl Z. Spectral Theory of Differential Operators, Partial differential equations. VII (Encyclopaedia of Mathematical Sciences), Volume 64, Springer, 1994 | Article | Zbl 0805.35081

[23] Steinerberger, Stefan A geometric uncertainty principle with an application to Pleijel’s estimate, Ann. Henri Poincaré, Volume 15 (2014) no. 12, pp. 2299-2319 | Article | MR 3272823 | Zbl 1319.35132

[24] Toth, John A.; Zelditch, Steve Counting nodal lines which touch the boundary of an analytic domain, J. Differ. Geom., Volume 81 (2009) no. 3, pp. 649-686 http://projecteuclid.org/euclid.jdg/1236604347 | MR 2487604 | Zbl 1180.35395

[25] Weinstock, Robert Calculus of variations. With applications to physics and engineering, Dover Books on Advanced Mathematics, Dover Publications, 1974, x+326 pages (reprint of the 1952 edition) | MR 0443487 | Zbl 0296.49001