Une classe d'opérateurs pseudo-différentiels du type de Volterra
Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 77-94.

On caractérise le symbole des opérateurs pseudo-différentiels dont le noyau K(x,y) est nul pour x1<y1 ; la propriété d’existence des paramétrix est alors remplacée par la propriété d’existence de vrais inverses.

We characterize the symbol of pseudo-differential operators which have a kernel K(x,y) vanishing where x1<y1; existence property for parametrix is then replaced by existence property for true inverses.

@article{AIF_1970__20_1_77_0,
     author = {Piriou, Alain},
     title = {Une classe d'op\'erateurs pseudo-diff\'erentiels du type de {Volterra}},
     journal = {Annales de l'Institut Fourier},
     pages = {77--94},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {20},
     number = {1},
     year = {1970},
     doi = {10.5802/aif.339},
     mrnumber = {54 #3514},
     zbl = {0186.20403},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.339/}
}
TY  - JOUR
AU  - Piriou, Alain
TI  - Une classe d'opérateurs pseudo-différentiels du type de Volterra
JO  - Annales de l'Institut Fourier
PY  - 1970
SP  - 77
EP  - 94
VL  - 20
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.339/
DO  - 10.5802/aif.339
LA  - fr
ID  - AIF_1970__20_1_77_0
ER  - 
%0 Journal Article
%A Piriou, Alain
%T Une classe d'opérateurs pseudo-différentiels du type de Volterra
%J Annales de l'Institut Fourier
%D 1970
%P 77-94
%V 20
%N 1
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.339/
%R 10.5802/aif.339
%G fr
%F AIF_1970__20_1_77_0
Piriou, Alain. Une classe d'opérateurs pseudo-différentiels du type de Volterra. Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 77-94. doi : 10.5802/aif.339. https://www.numdam.org/articles/10.5802/aif.339/

[1] M.S. Agranovitch et M.I. Vishik, Russian Math. Surveys, 19, (1964), 53-157.

[2] M.F. Atiyah et R. Bott, Ann. of Math. 86, (1967), 374-407. | Zbl

[3] L. Hörmander, Comm. Pure Appl. Math., 18, (1965), 501-517. | Zbl

[4] L. Hörmander, Proceedings of Symposia in pure Math., 10, (1967), 138-183. | Zbl

[5] L. Hörmander, Ann. of Math., 83, (1966), 129-209. | Zbl

[6] L. Hörmander, Cours à Stanford University, juillet 1967.

[7] C. Hunt et A. Piriou, Comptes Rendus, série A, 1969, 28-31. | Zbl

[8] C. Hunt et A. Piriou, Comptes Rendus, série A, 1969, 214-217. | Zbl

[9] J.J. Kohn et L. Nirenberg, Comm. Pure Appl. Math., 18, 1965, 269-305. | Zbl

[10] P. Kree, exposé au Séminaire Bourbaki, Novembre 1965. | Numdam

[11] P. Kree, à paraître aux Annales de l'Institut Fourier.

[12] E.E. Levi, Rend. del Circ. Mat. Palermo, 24, (1907), 275-317. | JFM

[13] J.E. Lewis, Journal of Math. Analysis and Appl., 26, 1969, 479-511. | Zbl

[14] A. Piriou, Comptes Rendus, série A, 1969, 692-695. | Zbl

[15] M.I. Vishik et G.I. Eskin, Mat. Sbornik, 71 (113), 1966, 162-190. | Zbl

  • Taira, Kazuaki The Cauchy Problem for the Heat Operator on Rn, Functional Analytic Methods for Heat Green Operators, Volume 2354 (2024), p. 357 | DOI:10.1007/978-3-031-66612-4_14
  • Taira, Kazuaki Fundamental Solution Operator for the Cauchy Problem on a Manifold, Functional Analytic Methods for Heat Green Operators, Volume 2354 (2024), p. 383 | DOI:10.1007/978-3-031-66612-4_15
  • Mahmoudi, M. Hedayat; Schulze, B.-W. Volterra Operators with Asymptotics on Manifolds with Edge, Analysis of Pseudo-Differential Operators (2019), p. 121 | DOI:10.1007/978-3-030-05168-6_6
  • Chang, Der-Chen; Hedayat Mahmoudi, M.; Schulze, Bert-Wolfgang Volterra operators in the edge-calculus, Analysis and Mathematical Physics, Volume 8 (2018) no. 4, p. 551 | DOI:10.1007/s13324-018-0238-4
  • Denk, Robert; Seiler, Jörg On the maximal L p -regularity of parabolic mixed-order systems, Journal of Evolution Equations, Volume 11 (2011) no. 2, p. 371 | DOI:10.1007/s00028-010-0095-6
  • Ponge, Raphaël A new proof of the local regularity of the eta invariant of a Dirac operator, Journal of Geometry and Physics, Volume 56 (2006) no. 9, p. 1654 | DOI:10.1016/j.geomphys.2005.09.003
  • Ponge, Raphaël A New short proof of the local index formula of Atiyah-Singer, Noncommutative Geometry and Number Theory (2006), p. 361 | DOI:10.1007/978-3-8348-0352-8_17
  • Liu, Xiaochun; Schulze, B.-W. Ellipticity on Manifolds With Edges and Boundary, Monatshefte für Mathematik, Volume 146 (2005) no. 4, p. 295 | DOI:10.1007/s00605-005-0337-9
  • Ponge, Raphaël; Mikayelyan, H. On the asymptotic completeness of the Volterra calculus, Journal d'Analyse Mathématique, Volume 94 (2004) no. 1, p. 249 | DOI:10.1007/bf02789049
  • Ponge, Raphaël A New Short Proof of the Local Index Formula and Some of Its Applications, Communications in Mathematical Physics, Volume 241 (2003) no. 2-3, p. 215 | DOI:10.1007/s00220-003-0915-4
  • Anttila, Juha A spline collocation method for parabolic pseudodifferential equations, Journal of Computational and Applied Mathematics, Volume 140 (2002) no. 1-2, p. 41 | DOI:10.1016/s0377-0427(01)00401-0
  • Krainer, Thomas Volterra Families of Pseudodifferential Operators, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 1 | DOI:10.1007/978-3-0348-8191-3_1
  • Krainer, Thomas The Calculus of Volterra Mellin Pseudodifferential Operators with Operator-valued Symbols, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 47 | DOI:10.1007/978-3-0348-8191-3_2
  • Krainer, Thomas; Schulze, Bert-Wolfgang On the Inverse of Parabolic Systems of Partial Differential Equations of General Form in an Infinite Space-Time Cylinder, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 93 | DOI:10.1007/978-3-0348-8191-3_3
  • Costabel, M.; Saranen, J. Parabolic boundary integral operators symbolic representation and basic properties, Integral Equations and Operator Theory, Volume 40 (2001) no. 2, p. 185 | DOI:10.1007/bf01301465
  • Buchholz, Thilo Anisotropic Edge Pseudo — Differential Operators with Discrete Asymptotics, Mathematische Nachrichten, Volume 184 (1997) no. 1, p. 73 | DOI:10.1002/mana.19971840104
  • Grubb, Gerd Parameter-elliptic and parabolic pseudodifferential boundary problems in globalL p sobolev spaces, Mathematische Zeitschrift, Volume 218 (1995) no. 1, p. 43 | DOI:10.1007/bf02571889
  • Costabel, Martin Developments in Boundary Element Methods for Time-Dependent Problems, Problems and Methods in Mathematical Physics (1994), p. 17 | DOI:10.1007/978-3-322-85161-1_2
  • Costabel, Martin Boundary integral operators for the heat equation, Integral Equations and Operator Theory, Volume 13 (1990) no. 4, p. 498 | DOI:10.1007/bf01210400
  • Murthy, M. K. Venkatesha Pseudo-Differential Operators of Volterra Type on Spaces of Ultra Distributions and Parabolic Mixed Problems, Partial Differential Equations and the Calculus of Variations (1989), p. 851 | DOI:10.1007/978-1-4684-9196-8_36
  • Murthy, M. K. Venkatesha Pseudo-Differential Operators of Volterra Type on Spaces of Ultra Distributions and Parabolic Mixed Problems, Partial Differential Equations and the Calculus of Variations (1989), p. 851 | DOI:10.1007/978-1-4615-9831-2_15
  • Schulze, Bert‐Wolfgang Degenerate Boundary Value Problems for Parabolic Pseudo‐Differential Operators, Mathematische Nachrichten, Volume 121 (1985) no. 1, p. 71 | DOI:10.1002/mana.19851210109
  • Lewis, Jeff E.; Parenti, Cesare Abstract singular parabolic equations, Communications in Partial Differential Equations, Volume 7 (1982) no. 3, p. 279 | DOI:10.1080/03605308208820224

Cité par 23 documents. Sources : Crossref