On caractérise le symbole des opérateurs pseudo-différentiels dont le noyau
We characterize the symbol of pseudo-differential operators which have a kernel
@article{AIF_1970__20_1_77_0, author = {Piriou, Alain}, title = {Une classe d'op\'erateurs pseudo-diff\'erentiels du type de {Volterra}}, journal = {Annales de l'Institut Fourier}, pages = {77--94}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {20}, number = {1}, year = {1970}, doi = {10.5802/aif.339}, mrnumber = {54 #3514}, zbl = {0186.20403}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.339/} }
TY - JOUR AU - Piriou, Alain TI - Une classe d'opérateurs pseudo-différentiels du type de Volterra JO - Annales de l'Institut Fourier PY - 1970 SP - 77 EP - 94 VL - 20 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.339/ DO - 10.5802/aif.339 LA - fr ID - AIF_1970__20_1_77_0 ER -
Piriou, Alain. Une classe d'opérateurs pseudo-différentiels du type de Volterra. Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 77-94. doi : 10.5802/aif.339. https://www.numdam.org/articles/10.5802/aif.339/
[1] Russian Math. Surveys, 19, (1964), 53-157.
et ,[2] Ann. of Math. 86, (1967), 374-407. | Zbl
et ,[3] Comm. Pure Appl. Math., 18, (1965), 501-517. | Zbl
,[4] Proceedings of Symposia in pure Math., 10, (1967), 138-183. | Zbl
,[5] Ann. of Math., 83, (1966), 129-209. | Zbl
,[6] Cours à Stanford University, juillet 1967.
,[7] Comptes Rendus, série A, 1969, 28-31. | Zbl
et ,[8] Comptes Rendus, série A, 1969, 214-217. | Zbl
et ,[9] Comm. Pure Appl. Math., 18, 1965, 269-305. | Zbl
et ,[10] exposé au Séminaire Bourbaki, Novembre 1965. | Numdam
,[11]
, à paraître aux Annales de l'Institut Fourier.[12] Rend. del Circ. Mat. Palermo, 24, (1907), 275-317. | JFM
,[13] Journal of Math. Analysis and Appl., 26, 1969, 479-511. | Zbl
,[14] Comptes Rendus, série A, 1969, 692-695. | Zbl
,[15] Mat. Sbornik, 71 (113), 1966, 162-190. | Zbl
et ,- The Cauchy Problem for the Heat Operator on
, Functional Analytic Methods for Heat Green Operators, Volume 2354 (2024), p. 357 | DOI:10.1007/978-3-031-66612-4_14 - Fundamental Solution Operator for the Cauchy Problem on a Manifold, Functional Analytic Methods for Heat Green Operators, Volume 2354 (2024), p. 383 | DOI:10.1007/978-3-031-66612-4_15
- Volterra Operators with Asymptotics on Manifolds with Edge, Analysis of Pseudo-Differential Operators (2019), p. 121 | DOI:10.1007/978-3-030-05168-6_6
- Volterra operators in the edge-calculus, Analysis and Mathematical Physics, Volume 8 (2018) no. 4, p. 551 | DOI:10.1007/s13324-018-0238-4
- On the maximal L p -regularity of parabolic mixed-order systems, Journal of Evolution Equations, Volume 11 (2011) no. 2, p. 371 | DOI:10.1007/s00028-010-0095-6
- A new proof of the local regularity of the eta invariant of a Dirac operator, Journal of Geometry and Physics, Volume 56 (2006) no. 9, p. 1654 | DOI:10.1016/j.geomphys.2005.09.003
- A New short proof of the local index formula of Atiyah-Singer, Noncommutative Geometry and Number Theory (2006), p. 361 | DOI:10.1007/978-3-8348-0352-8_17
- Ellipticity on Manifolds With Edges and Boundary, Monatshefte für Mathematik, Volume 146 (2005) no. 4, p. 295 | DOI:10.1007/s00605-005-0337-9
- On the asymptotic completeness of the Volterra calculus, Journal d'Analyse Mathématique, Volume 94 (2004) no. 1, p. 249 | DOI:10.1007/bf02789049
- A New Short Proof of the Local Index Formula and Some of Its Applications, Communications in Mathematical Physics, Volume 241 (2003) no. 2-3, p. 215 | DOI:10.1007/s00220-003-0915-4
- A spline collocation method for parabolic pseudodifferential equations, Journal of Computational and Applied Mathematics, Volume 140 (2002) no. 1-2, p. 41 | DOI:10.1016/s0377-0427(01)00401-0
- Volterra Families of Pseudodifferential Operators, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 1 | DOI:10.1007/978-3-0348-8191-3_1
- The Calculus of Volterra Mellin Pseudodifferential Operators with Operator-valued Symbols, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 47 | DOI:10.1007/978-3-0348-8191-3_2
- On the Inverse of Parabolic Systems of Partial Differential Equations of General Form in an Infinite Space-Time Cylinder, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 93 | DOI:10.1007/978-3-0348-8191-3_3
- Parabolic boundary integral operators symbolic representation and basic properties, Integral Equations and Operator Theory, Volume 40 (2001) no. 2, p. 185 | DOI:10.1007/bf01301465
- Anisotropic Edge Pseudo — Differential Operators with Discrete Asymptotics, Mathematische Nachrichten, Volume 184 (1997) no. 1, p. 73 | DOI:10.1002/mana.19971840104
- Parameter-elliptic and parabolic pseudodifferential boundary problems in globalL p sobolev spaces, Mathematische Zeitschrift, Volume 218 (1995) no. 1, p. 43 | DOI:10.1007/bf02571889
- Developments in Boundary Element Methods for Time-Dependent Problems, Problems and Methods in Mathematical Physics (1994), p. 17 | DOI:10.1007/978-3-322-85161-1_2
- Boundary integral operators for the heat equation, Integral Equations and Operator Theory, Volume 13 (1990) no. 4, p. 498 | DOI:10.1007/bf01210400
- Pseudo-Differential Operators of Volterra Type on Spaces of Ultra Distributions and Parabolic Mixed Problems, Partial Differential Equations and the Calculus of Variations (1989), p. 851 | DOI:10.1007/978-1-4684-9196-8_36
- Pseudo-Differential Operators of Volterra Type on Spaces of Ultra Distributions and Parabolic Mixed Problems, Partial Differential Equations and the Calculus of Variations (1989), p. 851 | DOI:10.1007/978-1-4615-9831-2_15
- Degenerate Boundary Value Problems for Parabolic Pseudo‐Differential Operators, Mathematische Nachrichten, Volume 121 (1985) no. 1, p. 71 | DOI:10.1002/mana.19851210109
- Abstract singular parabolic equations, Communications in Partial Differential Equations, Volume 7 (1982) no. 3, p. 279 | DOI:10.1080/03605308208820224
Cité par 23 documents. Sources : Crossref