Dans cet article, nous revenons sur un célèbre théorème de Candel que nous renforçons en prouvant qu’étant donnée une lamination compacte par surfaces hyperboliques, toute fonction négative lisse dans les feuilles et transversalement continue est la fonction courbure d’une unique métrique laminée dans la classe conforme correspondante. Nous interprétons ce fait comme la continuité de solutions de certaines EDP elliptiques dans une topologie, dite de Cheeger–Gromov, sur l’espace des variétés riemanniennes complètes pointées.
In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger–Gromov topology on the space of complete pointed riemannian manifolds.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3476
Mot clés : Laminations par surfaces hyperboliques, Prescription de courbure
Keywords: lamination by hyperbolic surfaces, prescrired curvature
@article{AIF_2021__71_6_2549_0, author = {Alvarez, S\'ebastien and Smith, Graham}, title = {Prescription de courbure des feuilles des laminations~: retour sur un th\'eor\`eme de {Candel}}, journal = {Annales de l'Institut Fourier}, pages = {2549--2593}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {6}, year = {2021}, doi = {10.5802/aif.3476}, zbl = {07554454}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/aif.3476/} }
TY - JOUR AU - Alvarez, Sébastien AU - Smith, Graham TI - Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel JO - Annales de l'Institut Fourier PY - 2021 SP - 2549 EP - 2593 VL - 71 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.3476/ DO - 10.5802/aif.3476 LA - fr ID - AIF_2021__71_6_2549_0 ER -
%0 Journal Article %A Alvarez, Sébastien %A Smith, Graham %T Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel %J Annales de l'Institut Fourier %D 2021 %P 2549-2593 %V 71 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.3476/ %R 10.5802/aif.3476 %G fr %F AIF_2021__71_6_2549_0
Alvarez, Sébastien; Smith, Graham. Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel. Annales de l'Institut Fourier, Tome 71 (2021) no. 6, pp. 2549-2593. doi : 10.5802/aif.3476. http://archive.numdam.org/articles/10.5802/aif.3476/
[1] Lectures on quasiconformal mappings, University Lecture Series, 38, American Mathematical Society, 2006, viii+162 pages (with supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard) | MR
[2] Riemann’s mapping theorem for variable metrics, Ann. Math., Volume 72 (1960), pp. 385-404 | DOI | MR | Zbl
[3] Groupoïde d’homotopie d’un feuilletage riemannien et réalisation symplectique de certaines variétés de Poisson, Publ. Mat., Barc., Volume 33 (1989) no. 3, pp. 395-410 | DOI | MR | Zbl
[4] Unique ergodicity of the horocycle flow on Riemannnian foliations, Ergodic Theory Dyn. Syst., Volume 40 (2020) no. 6, pp. 1459-1479 | DOI | MR | Zbl
[5] Feuilletages en surfaces, cycles évanouissants et variétés de Poisson, Monatsh. Math., Volume 124 (1997) no. 3, pp. 191-213 | DOI | MR | Zbl
[6] Harmonic measures and the foliated geodesic flow for foliations with negatively curved leaves, Ergodic Theory Dyn. Syst., Volume 36 (2016) no. 2, pp. 355-374 | DOI | MR | Zbl
[7] Gibbs -states for the foliated geodesic flow and transverse invariant measures, Isr. J. Math., Volume 221 (2017) no. 2, pp. 869-940 | DOI | MR | Zbl
[8] Gibbs measures for foliated bundles with negatively curved leaves, Ergodic Theory Dyn. Syst., Volume 38 (2018) no. 4, pp. 1238-1288 | DOI | MR | Zbl
[9] Topology of leaves for minimal laminations by non-simply connected hyperbolic surfaces (2020) (https://arxiv.org/abs/2005.09050, to appear in Groups Geom. Dyn.)
[10] Topology of leaves for minimal laminations by hyperbolic surfaces. (with an appendix with M. Wolff) (2019) (https://arxiv.org/abs/1906.10029)
[11] The Teichmüller space of the Hirsch foliation, Ann. Inst. Fourier, Volume 68 (2018) no. 1, pp. 1-51 | DOI | Numdam | MR | Zbl
[12] Earthquakes and graftings of hyperbolic surface laminations (2019) (https://arxiv.org/abs/1907.12126, to appear in Int. Math. Res. Not.)
[13] Physical measures for the geodesic flow tangent to a transversally conformal foliation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 36 (2019) no. 1, pp. 27-51 | DOI | MR | Zbl
[14] Realization of manifolds as leaves using graph colorings (2020) (https://arxiv.org/abs/2002.08662)
[15] A universal Riemannian foliated space, Topology Appl., Volume 198 (2016), pp. 47-85 | DOI | MR | Zbl
[16] Generic coarse geometry of leaves, Lecture Notes in Mathematics, 2223, Springer, 2018, xv+171 pages | DOI | MR
[17] Conformal deformations of complete manifolds with negative curvature, J. Differ. Geom., Volume 21 (1985) no. 2, pp. 269-281 | MR | Zbl
[18] Manifolds of nonpositive curvature, Progress in Mathematics, 61, Birkhäuser, 1985, vi+263 pages | DOI | MR
[19] Riemannian structures of prescribed Gaussian curvature for compact -manifolds, J. Differ. Geom., Volume 5 (1971), pp. 325-332 | MR | Zbl
[20] Complete metrics conformal to the hyperbolic disc, Proc. Am. Math. Soc., Volume 97 (1986) no. 1, pp. 128-132 | DOI | MR | Zbl
[21] Foliated hyperbolicity and foliations with hyperbolic leaves, Ergodic Theory Dyn. Syst., Volume 40 (2020) no. 4, pp. 881-903 | DOI | MR | Zbl
[22] Dense embeddings of surface groups, Geom. Topol., Volume 10 (2006), pp. 1373-1389 | DOI | MR | Zbl
[23] Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, 1983, xiv+234 pages | MR
[24] Foliations and the geometry of 3-manifolds, Oxford Mathematical Monographs, Oxford University Press, 2007, xiv+363 pages | MR
[25] Geometric theory of foliations, Birkhäuser, 1985, vi+205 pages | DOI | MR
[26] Uniformization of surface laminations, Ann. Sci. Éc. Norm. Supér., Volume 26 (1993) no. 4, pp. 489-516 | DOI | Numdam | MR | Zbl
[27] The harmonic measures of Lucy Garnett, Adv. Math., Volume 176 (2003) no. 2, pp. 187-247 | DOI | MR | Zbl
[28] Riemannian geometry—a modern introduction, Cambridge Tracts in Mathematics, 108, Cambridge University Press, 1993, xii+386 pages | MR
[29] Finiteness theorems for Riemannian manifolds, Am. J. Math., Volume 92 (1970), pp. 61-74 | DOI | MR | Zbl
[30] The Ricci flow : an introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, 2004, xii+325 pages | DOI | MR
[31] Nonrigidity of hyperbolic surfaces laminations, Proc. Am. Math. Soc., Volume 135 (2007) no. 3, pp. 873-881 | DOI | MR | Zbl
[32] Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal., Volume 51 (1983) no. 3, pp. 285-311 | DOI | MR | Zbl
[33] Gauss–Bonnet theorem for -dimensional foliations, J. Funct. Anal., Volume 77 (1988) no. 1, pp. 51-59 | DOI | MR | Zbl
[34] Sur l’uniformisation des laminations paraboliques, Integrable systems and foliations/Feuilletages et systèmes intégrables (Montpellier, 1995) (Progress in Mathematics), Volume 145, Birkhäuser, 1997, pp. 73-91 | DOI | MR | Zbl
[35] Laminations par surfaces de Riemann, Dynamique et géométrie complexes (Lyon, 1997) (Panoramas et Synthèses), Volume 8, Société Mathématique de France, 1999, pp. ix, xi, 49-95 | MR | Zbl
[36] Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, 224, Springer, 1983, xiii+513 pages | DOI | MR
[37] Feuilletages : Études géométriques, Progress in Mathematics, 98, Birkhäuser, 1991, xiv+474 pages | MR
[38] Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser, 1999, xx+585 pages (with appendices by M. Katz, P. Pansu and S. Semmes) | MR
[39] Introduction to the geometry of foliations. Part A : Foliations on compact surfaces, fundamentals for arbitrary codimension, and holonomy, Aspects of Mathematics, 1, Vieweg & Sohn, 1981, xi+234 pages | DOI | MR
[40] Prescribing curvature on open surfaces, Math. Ann., Volume 293 (1992) no. 2, pp. 277-315 | DOI | MR | Zbl
[41] Curvature functions for compact -manifolds, Ann. Math., Volume 99 (1974), pp. 14-47 | DOI | MR | Zbl
[42] Curvature functions for open -manifolds, Ann. Math., Volume 99 (1974), pp. 203-219 | DOI | MR | Zbl
[43] Reeb stability and the Gromov–Hausdorff limits of leaves in compact foliations, Asian J. Math., Volume 19 (2015) no. 3, pp. 433-463 | DOI | MR | Zbl
[44] Brownian motion on stationary random manifolds, Stoch. Dyn., Volume 16 (2016) no. 2, 1660001, 66 pages | DOI | MR | Zbl
[45] Géométrie globale des feuilletages riemanniens, Indag. Math., New Ser., Volume 44 (1982) no. 1, pp. 45-76 | DOI | MR | Zbl
[46] Riemannian foliations, Progress in Mathematics, 73, Birkhäuser, 1988, xii+339 pages (translated from the French by Grant Cairns, with appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu) | DOI | MR
[47] Global analysis on foliated spaces, Mathematical Sciences Research Institute Publications, 9, Cambridge University Press, 2006, xiv+293 pages | MR
[48] Uniformization of compact foliated spaces by surfaces of hyperbolic type via the Ricci flo, Proc. Am. Math. Soc. (2021) (in Early View) | DOI | Zbl
[49] On the inequality , Pac. J. Math., Volume 7 (1957), pp. 1641-1647 | DOI | MR | Zbl
[50] Teichmüller theory of the punctured solenoid, Geom. Dedicata, Volume 132 (2008), pp. 179-212 | DOI | MR | Zbl
[51] Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, 2006, xvi+401 pages | MR
[52] Les fonctions fuchsiennes et l’équation , Journ. de Math. (5), Volume 293 (1898) no. 5, pp. 137-230
[53] The Teichmüller theory of the solenoid, Handbook of Teichmüller theory. Vol. II (IRMA Lectures in Mathematics and Theoretical Physics), Volume 13, European Mathematical Society, 2009, pp. 811-857 | DOI | MR | Zbl
[54] Hyperbolic Plateau problems, Geom. Dedicata, Volume 176 (2015), pp. 31-44 | DOI | MR | Zbl
[55] Bounds, quadratic differentials, and renormalization conjectures, Mathematics into the twenty-first century. Proceedings of the AMS centennial symposium (Providence, RI, 1988) (American Mathematical Society Centennial Publications), Volume 2, American Mathematical Society, 1992, pp. 417-466 | MR | Zbl
[56] Linking the universalities of Milnor-Thurston, Feigenbaum and Ahlfors-Bers, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish Inc., 1993, pp. 543-564 | MR | Zbl
[57] A uniformization theorem for holomorphic foliations, The Lefschetz centennial conference, Part III (Mexico City, 1984) (Contemporary Mathematics), Volume 58, American Mathematical Society, 1987, pp. 233-253 | DOI | MR | Zbl
Cité par Sources :