Étant donné un système projectif d’espaces mesurés , on étudie le problème d’existence d’une limite projective en considérant d’abord une mesure définie sur le produit . Sous de simples conditions de régularité des , on montre que a presque toutes les propriétés d’une limite. En outre, la limite projective peut exister seulement si est elle-même une “limite” dans un sens plus général et est alors la restriction de à l’ensemble limite des . On obtient des résultats plus forts que ceux connus jusqu’à présent en examinant cette restriction.
In this paper the problem of the existence of an inverse (or projective) limit measure of an inverse system of measure spaces is approached by obtaining first a measure on the whole product space .
The measure will have many of the properties of a limit measure provided only that the measures possess mild regularity properties.
It is shown that can only exist when is itself a “limit” measure in a more general sense, and that must then be the restriction of to the projective limit set .
Results stronger than those previously known are obtained by examining restricted to .
@article{AIF_1971__21_1_25_0, author = {Mallory, J. D. and Sion, Maurice}, title = {Limits of inverse systems of measures}, journal = {Annales de l'Institut Fourier}, pages = {25--57}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {21}, number = {1}, year = {1971}, doi = {10.5802/aif.361}, mrnumber = {44 #1782}, zbl = {0205.07101}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.361/} }
TY - JOUR AU - Mallory, J. D. AU - Sion, Maurice TI - Limits of inverse systems of measures JO - Annales de l'Institut Fourier PY - 1971 SP - 25 EP - 57 VL - 21 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.361/ DO - 10.5802/aif.361 LA - en ID - AIF_1971__21_1_25_0 ER -
Mallory, J. D.; Sion, Maurice. Limits of inverse systems of measures. Annales de l'Institut Fourier, Tome 21 (1971) no. 1, pp. 25-57. doi : 10.5802/aif.361. http://archive.numdam.org/articles/10.5802/aif.361/
[1] Of the introduction of measures in infinite product sets, Danski Vid. Selskab Mat. Fys. Medd. 25 (1948) No. 4. | MR | Zbl
and ,[2] Measure and integration, MacMillan Co. New York (1965). | MR | Zbl
,[3] Harmonic analysis and probability theory Univ. of Cal. Press, Berkeley, 1955. | Zbl
,[4] Théorie des Ensembles Livre I Ch. III, Hermann, Paris.
,[5] inverse limits of measure spaces, Proc. London Math. Soc., 8 (1958) 321-342. | MR | Zbl
,[6] Measure theory, Van Nostrand, New York, (1950). | MR | Zbl
,[7] Conditional probabilities on strictly separable σ-algebra (Russian) Czech. Math. J. 4 (79) (1954) 372-80. | MR | Zbl
,[8] Introduction to measure and probability, Cambridge U.P. London, 1966. | Zbl
and ,[9] Grundebegriff der Wahrscheinlichheit (Berlin, 1933), (English translation: Chelsea, New York 1956).
,[10] Limits of Inverse Systems of Measures, thesis, University of British Columbia 1968.
,[11] On Compact Measures, Fund. Math. 40 (1953) 113-24. | MR | Zbl
,[12] Limites projectives de mesures, Martingales Applications, Ann. di Mathematica 63, (1963) 225-352. | MR | Zbl
,[13] Probabilities and Potentials, Blaisdell (1966). | Zbl
,[14] Mathematical Foundations of the Calculus of Probability, Holden-Day, 1965. | MR | Zbl
,[15] Convergence of random processes and limit theorems of probability theory (in Russian), Teoriya Veroyatnostei i ee Primeneniya 1, 177-237 (1956). English translation: Theory Probab. and Appl. 1, 157-214 (1956). | MR | Zbl
, ,[16] Sur une généralisation d'un théorème d'Ionescu Tulcea, C.R. Acad. Sc. Paris 259 (1964), 2769-2772. | MR | Zbl
,[17] Generalizations of the theory of Lebesgue spaces and of the definition of entropy in ergodic theory, thesis, University of Utrecht 1966.
,[18] Projective limits of directed projective systems of probability spaces, Z. Wahrscheinlichkeitstheorie verw. Geb. 13, 60-80 (1969). | MR | Zbl
,[19] Lecture Notes on Measure Theory, Biennial Seminar of the Canadian Mathematical Congress, (1965).
,[20] Introduction to the Methods of Real Analysis, Holt, Rinehart and Winston, New York (1968). | MR | Zbl
,Cité par Sources :