Analysis on some linear sets
Annales de l'Institut Fourier, Tome 21 (1971) no. 2, pp. 23-29.

On construit des ensembles aléatoires de multiplicité rationnellement indépendants, précisant ces propriétés sous deux aspects techniques. On améliore quelques résultats obtenus par les processus gaussiens ou la méthode topologique de catégorie.

The note discusses a probabilistic method for constructing “small” sets, with regard to differentiable transformations and to quantitative measures of independence.

@article{AIF_1971__21_2_23_0,
     author = {Kaufman, Robert},
     title = {Analysis on some linear sets},
     journal = {Annales de l'Institut Fourier},
     pages = {23--29},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     number = {2},
     year = {1971},
     doi = {10.5802/aif.370},
     zbl = {0215.25403},
     mrnumber = {49 #5677},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.370/}
}
TY  - JOUR
AU  - Kaufman, Robert
TI  - Analysis on some linear sets
JO  - Annales de l'Institut Fourier
PY  - 1971
DA  - 1971///
SP  - 23
EP  - 29
VL  - 21
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.370/
UR  - https://zbmath.org/?q=an%3A0215.25403
UR  - https://www.ams.org/mathscinet-getitem?mr=49 #5677
UR  - https://doi.org/10.5802/aif.370
DO  - 10.5802/aif.370
LA  - en
ID  - AIF_1971__21_2_23_0
ER  - 
Kaufman, Robert. Analysis on some linear sets. Annales de l'Institut Fourier, Tome 21 (1971) no. 2, pp. 23-29. doi : 10.5802/aif.370. http://archive.numdam.org/articles/10.5802/aif.370/

[1] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tract 45, (1957). | MR 19,396h | Zbl 0077.04801

[2] H. Davenport, A note on Diophantine approximation II. Mathematika 11 (1964), 50-58. | MR 29 #3432 | Zbl 0122.05903

[3] J.-P. Kahane, Images browniennes des ensembles parfaits, C.R. Acad. Sci., Paris 263A (1966), 613-615. | MR 35 #3752 | Zbl 0158.35703

[4] J.-P. Kahane and R. Salem, Ensembles parfaits, Hermann, Paris, 1963. | Zbl 0112.29304

[5] N. Th. Varopoulos, Sets of multiplicity in locally compact abelian groups, Ann. Inst. Fourier (Grenoble) 16 (1966), 123-158. | Numdam | MR 35 #3379 | Zbl 0145.03501

[6] A. Zygmund, Trigonometric Series, Cambridge, (1959, 1968). | Zbl 0085.05601

Cité par Sources :