The measure extension problem for vector lattices
Annales de l'Institut Fourier, Tome 21 (1971) no. 4, pp. 65-85.

Soit V un espace vectoriel ordonné σ-réticulé. Si toute prémesure à valeurs dans V, définie sur une algèbre de sous-ensembles de n’importe quel ensemble X admet une extension σ-additive on dit que V a la propriété d’extension (“measure extension property”). On connaît différentes conditions sur V qui impliquent cette propriété. Mais dans cet article nous obtenons des conditions nécessaires et suffisantes. Voici la caractérisation la plus utile : V a la propriété d’extension si et seulement si toute mesure définie sur les sous-ensembles de Baire d’un espace compact, et à valeurs dans V, est régulière. Nous en tirons une caractérisation purement algébrique : V a la propriété d’extension si et seulement si V est faiblement σ-distributif.

Let V be a boundedly σ-complete vector lattice. If each V-valued premeasure on an arbitrary field of subsets of an arbitrary set can be extended to a σ-additive measure on the generated σ-field then V is said to have the measure extension property. Various sufficient conditions on V which ensure that it has this property are known. But a complete characterisation of the property, that is, necessary and sufficient conditions, is obtained here. One of the most useful characterisations is: V has the measure extension property if, and only if, each V-valued Baire measure on each compact Hausdorff space is regular. This leads to an intrinsic algebraic characterisation: V has the measure extension property if, and only if, V is weakly σ-distributive.

@article{AIF_1971__21_4_65_0,
     author = {Wright, J. D. Maitland},
     title = {The measure extension problem for vector lattices},
     journal = {Annales de l'Institut Fourier},
     pages = {65--85},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     number = {4},
     year = {1971},
     doi = {10.5802/aif.393},
     mrnumber = {48 #8748},
     zbl = {0223.46012},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.393/}
}
TY  - JOUR
AU  - Wright, J. D. Maitland
TI  - The measure extension problem for vector lattices
JO  - Annales de l'Institut Fourier
PY  - 1971
SP  - 65
EP  - 85
VL  - 21
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.393/
DO  - 10.5802/aif.393
LA  - en
ID  - AIF_1971__21_4_65_0
ER  - 
%0 Journal Article
%A Wright, J. D. Maitland
%T The measure extension problem for vector lattices
%J Annales de l'Institut Fourier
%D 1971
%P 65-85
%V 21
%N 4
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.393/
%R 10.5802/aif.393
%G en
%F AIF_1971__21_4_65_0
Wright, J. D. Maitland. The measure extension problem for vector lattices. Annales de l'Institut Fourier, Tome 21 (1971) no. 4, pp. 65-85. doi : 10.5802/aif.393. https://www.numdam.org/articles/10.5802/aif.393/

[1] E. E. Floyd, "Boolean algebras with pathological order properties", Pacific J. Math., 5, 687-689 (1955). | MR | Zbl

[2] P. R. Halmos, Boolean algebras, Van Nostrand (1963). | MR | Zbl

[3] P. R. Halmos, Measure theory, Van Nostrand (1950). | MR | Zbl

[4] E. Hewitt and K. Stromberg, Real and abstract analysis, Springer (1965). | Zbl

[5] A. Horn and A. Tarski, "Measures in Boolean algebras", Trans. Amer. Math. Soc., 64, 467-497 (1948). | MR | Zbl

[6] L. V. Kantorovich, B. Z. Vulich and A. G. Pinsker, Fonctional analysis in partially ordered spaces, Gostekhizdat (1950). (Russian).

[7] E. J. Mcshane. Order-preserving maps and integration processes, Annals Math. Studies, 31 (1953). | MR | Zbl

[8] K. Matthes, "Über eine Schar von Regularitätsbedingungen", Math. Nachr., 22, 93-128 (1960). | MR | Zbl

[9] K. Matthes, "Über eine Schar von Regularitätsbedingungen II", Math. Nachr., 23, 149-159 (1961). | MR | Zbl

[10] K. Matthes, "Über die Ausdehnung von N-Homomorphismen Boolescher Algebren", Z. math. Logik u. Grundl. Math., 6, 97-105 (1960). | MR | Zbl

[11] K. Matthes, "Über die Ausdehnung von N-Homomorphismen Boolescher Algebren II", Z. Math. logik u. Grundl. Math., 7, 16-19, (1961). | MR | Zbl

[12] R. Sikorski, Boolean algebras, Springer (1962) (Second edition).

[13] R. Sikorski, "On an analogy between measures and homomorphisms", Ann. Soc. Pol. Math., 23, 1-20 (1950). | MR | Zbl

[14] M. H. Stone, Boundedness properties in function lattices, Canadian J. Math., 1 176-186 (1949). | MR | Zbl

[15] J. D. Maitland Wright, "Stone-algebra-valued measures and integrals", Proc. London Math. Soc., (3), 19, 107-122 (1969). | MR | Zbl

[16] R. V. Kadison, "A representation theory for commutative topological algebra", Memoirs Amer. Math. Soc., 7 (1951). | MR | Zbl

[17] J. L. Kelley, "Measures in Boolean algebras", Pacific J. Math. 9, 1165-1171 (1959). | MR | Zbl

  • de Jeu, Marcel; Jiang, Xingni Riesz representation theorems for positive linear operators, Banach Journal of Mathematical Analysis, Volume 16 (2022) no. 3 | DOI:10.1007/s43037-022-00177-7
  • Boccuto, Antonio; Candeloro, Domenico; Sambucini, Anna Rita LpSpaces in vector lattices and applications, Mathematica Slovaca, Volume 67 (2017) no. 6, p. 1409 | DOI:10.1515/ms-2017-0060
  • Boccuto, A.; Skvortsov, V. A.; Tulone, F. A Hake-Type Theorem for Integrals with Respect to Abstract Derivation Bases in the Riesz Space Setting, Mathematica Slovaca, Volume 65 (2015) no. 6, p. 1319 | DOI:10.1515/ms-2015-0092
  • Mundici, D. Recurrence, Probability, Measure, Advanced Łukasiewicz calculus and MV-algebras (2011), p. 149 | DOI:10.1007/978-94-007-0840-2_13
  • Boccuto, Antonio; Candeloro, Domenico Uniform (s)-boundedness and regularity for (l)-group-valued measures, Central European Journal of Mathematics, Volume 9 (2011) no. 2, p. 433 | DOI:10.2478/s11533-010-0097-1
  • Kawabe, Jun The continuity and compactness of Riesz space-valued indirect product measures, Fuzzy Sets and Systems, Volume 175 (2011) no. 1, p. 65 | DOI:10.1016/j.fss.2011.02.005
  • Kawabe, Jun A Study of Riesz Space-Valued Non-additive Measures, Integrated Uncertainty Management and Applications, Volume 68 (2010), p. 91 | DOI:10.1007/978-3-642-11960-6_10
  • Kawabe, Jun The Choquet integral in Riesz space, Fuzzy Sets and Systems, Volume 159 (2008) no. 6, p. 629 | DOI:10.1016/j.fss.2007.09.013
  • Khurana, Surjit Product of lattice-valued measures on topological spaces, Mathematica Slovaca, Volume 58 (2008) no. 3, p. 309 | DOI:10.2478/s12175-008-0076-1
  • Kawabe, Jun The Egoroff property and the Egoroff theorem in Riesz space-valued non-additive measure theory, Fuzzy Sets and Systems, Volume 158 (2007) no. 1, p. 50 | DOI:10.1016/j.fss.2006.09.019
  • Kawabe, Jun The Alexandroff theorem for Riesz space-valued non-additive measures, Fuzzy Sets and Systems, Volume 158 (2007) no. 21, p. 2413 | DOI:10.1016/j.fss.2007.06.009
  • Michalikova, Alzbeta; Valencakova, Veronika, 2006 3rd International IEEE Conference Intelligent Systems (2006), p. 728 | DOI:10.1109/is.2006.348509
  • Kawabe, Jun Uniformity for weak order convergence of Riesz space-valued measures, Bulletin of the Australian Mathematical Society, Volume 71 (2005) no. 2, p. 265 | DOI:10.1017/s0004972700038235
  • Boccuto, A.; Riečan, B. On the Henstock-Kurzweil Integral for Riesz-Space-Valued Functions Defined on Unbounded Intervals, Czechoslovak Mathematical Journal, Volume 54 (2004) no. 3, p. 591 | DOI:10.1007/s10587-004-6411-y
  • Rieĕan, Beloslav; Mundici, Daniele Probability on MV-Algebras, Handbook of Measure Theory (2002), p. 869 | DOI:10.1016/b978-044450263-6/50022-1
  • Boccuto, A.; Candeloro, D. Uniform s-Boundedness and Convergence Results for Measures with Values in Complete l-Groups, Journal of Mathematical Analysis and Applications, Volume 265 (2002) no. 1, p. 170 | DOI:10.1006/jmaa.2001.7715
  • Kusraev, A. G.; Malyugin, S. A. Vector Measures and Dominated Mappings, Nonstandard Analysis and Vector Lattices (2000), p. 231 | DOI:10.1007/978-94-011-4305-9_5
  • RIEČAN, BELOSLAV ON THE SUM OF OBSERVABLES IN PRODUCT MV ALGEBRAS, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Volume 07 (1999) no. 06, p. 671 | DOI:10.1142/s0218488599000544
  • Riečan, Beloslav On the Extension of D-Poset Valued Measures, Czechoslovak Mathematical Journal, Volume 48 (1998) no. 3, p. 385 | DOI:10.1023/a:1022464924805
  • Malyugin, S. A. Quasi-Radon measures, Siberian Mathematical Journal, Volume 32 (1992) no. 5, p. 812 | DOI:10.1007/bf00971179
  • Shamaev, I. I. One-dimensional elements and their application in a representation of a lattice-ordered algebra, Siberian Mathematical Journal, Volume 29 (1989) no. 4, p. 671 | DOI:10.1007/bf00969876
  • Kusraev, A. G.; Malyugin, S. A. Order-continuous component of a majorized operator, Siberian Mathematical Journal, Volume 28 (1988) no. 4, p. 617 | DOI:10.1007/bf00973851
  • Panchapagesan, T. V.; Palled, Shivappa Veerappa On vector lattice-valued measures II, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, Volume 40 (1986) no. 2, p. 234 | DOI:10.1017/s144678870002721x
  • Shamaev, I. I. Countable extension of measures and ?-integrals with values in vector lattices, Mathematical Notes of the Academy of Sciences of the USSR, Volume 39 (1986) no. 5, p. 414 | DOI:10.1007/bf01156683
  • Shamaev, I. I. Countable extension of a measure with values in a vector lattice, Siberian Mathematical Journal, Volume 22 (1982) no. 3, p. 481 | DOI:10.1007/bf00969783
  • References, Convex Cones, Volume 56 (1981), p. 403 | DOI:10.1016/s0304-0208(08)71030-2
  • Khurana, Surjit Singh Submeasures and decomposition of measures, Journal of Mathematical Analysis and Applications, Volume 70 (1979) no. 1, p. 111 | DOI:10.1016/0022-247x(79)90079-9
  • Maitland Wright, J. D. Measures with values in partially ordered spaces: Regularity and σ-additivity, Measure Theory, Volume 541 (1976), p. 267 | DOI:10.1007/bfb0081060
  • H�hle, Ulrich Maauf unscharfen Mengen, Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete, Volume 36 (1976) no. 3, p. 179 | DOI:10.1007/bf00532543
  • Poroshkin, A. G. Two properties of Boolean algebras with a vector measure, Siberian Mathematical Journal, Volume 16 (1975) no. 2, p. 259 | DOI:10.1007/bf00967510

Cité par 30 documents. Sources : Crossref