On nonbornological barrelled spaces
Annales de l'Institut Fourier, Tome 22 (1972) no. 2, pp. 27-30.

On démontre que si E est le produit topologique d’une famille non dénombrable d’espaces tonnelés de dimension non nulle, il existe un nombre infini de sous-espaces tonnelés de E, qui ne sont pas bornologiques. Un résultat semblable est obtenu si l’on change “tonnelé” en “infratonnelé”.

If E is the topological product of a non-countable family of barrelled spaces of non-nulle dimension, there exists an infinite number of non-bornological barrelled subspaces of E. The same result is obtained replacing “barrelled” by “quasi-barrelled”.

@article{AIF_1972__22_2_27_0,
     author = {Valdivia, Manuel},
     title = {On nonbornological barrelled spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {27--30},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {22},
     number = {2},
     year = {1972},
     doi = {10.5802/aif.410},
     mrnumber = {49 #1050},
     zbl = {0226.46006},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.410/}
}
TY  - JOUR
AU  - Valdivia, Manuel
TI  - On nonbornological barrelled spaces
JO  - Annales de l'Institut Fourier
PY  - 1972
SP  - 27
EP  - 30
VL  - 22
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.410/
DO  - 10.5802/aif.410
LA  - en
ID  - AIF_1972__22_2_27_0
ER  - 
%0 Journal Article
%A Valdivia, Manuel
%T On nonbornological barrelled spaces
%J Annales de l'Institut Fourier
%D 1972
%P 27-30
%V 22
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.410/
%R 10.5802/aif.410
%G en
%F AIF_1972__22_2_27_0
Valdivia, Manuel. On nonbornological barrelled spaces. Annales de l'Institut Fourier, Tome 22 (1972) no. 2, pp. 27-30. doi : 10.5802/aif.410. https://www.numdam.org/articles/10.5802/aif.410/

[1] N. Bourbaki, Sur certains spaces vectoriels topologiques, Ann. Inst. Fourier, 5-16 (1950). | Numdam | MR | Zbl

[2] J. Dieudonné, Recent development in the theory of locally convex spaces, Bull. Amer. Math. Soc., 59, 495-512 (1953). | MR | Zbl

[3] J. Dieudonné, Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math., 25, 50-55 (1952). | MR | Zbl

[4] Y. Komura, Some examples on linear topological spaces, Math. Ann., 153, 150-162 (1964). | MR | Zbl

[5] L. Nachbin, Topological vector spaces of continuous functions, Proc. Nat. Acad. Sci., USA, 40, 471-474 (1954). | MR | Zbl

[6] T. Shirota, On locally convex vector spaces of continuous functions, Proc. Jap. Acad., 30, 294-298 (1954). | MR | Zbl

  • Bonet, José; Galindo, Pablo; García, Domingo; Maestre, Manuel Locally bounded sets of holomorphic mappings, Transactions of the American Mathematical Society, Volume 309 (1988) no. 2, p. 609 | DOI:10.1090/s0002-9947-1988-0961603-8
  • References, Barrelled Locally Convex Spaces, Volume 131 (1987), p. 484 | DOI:10.1016/s0304-0208(08)71679-7
  • Galindo, Pablo; García, Domingo; Maestre, Manuel Holomorphically ultrabornological spaces and holomorphic inductive limits, Journal of Mathematical Analysis and Applications, Volume 124 (1987) no. 1, p. 15 | DOI:10.1016/0022-247x(87)90020-5
  • Horváth, J. The Life and Works of Leopoldo Nachbin, Aspects of Mathematics and its Applications, Volume 34 (1986), p. 1 | DOI:10.1016/s0924-6509(09)70249-1
  • Kąkol, Jerzy On subspaces and products of some topological linear spaces, Archiv der Mathematik, Volume 40 (1983) no. 1, p. 355 | DOI:10.1007/bf01192795
  • Mukherjee, T. K.; Summers, W. H. Stability and closed graph theorems in classes of bornological spaces, Glasgow Mathematical Journal, Volume 23 (1982) no. 2, p. 151 | DOI:10.1017/s0017089500004924
  • Eberhardt, Volker �ber einen Graphensatz f�r Abbildungen mit normiertem Zielraum, Manuscripta Mathematica, Volume 12 (1974) no. 1, p. 47 | DOI:10.1007/bf01166233
  • Valdivia, Manuel A note on locally convex spaces, Mathematische Annalen, Volume 201 (1973) no. 2, p. 145 | DOI:10.1007/bf01359791
  • Valdivia, Manuel On a class of quasi-barrelled spaces, Mathematische Annalen, Volume 202 (1973) no. 4, p. 295 | DOI:10.1007/bf01433459
  • Horváth, John Locally convex spaces, Summer School on Topological Vector Spaces, Volume 331 (1973), p. 41 | DOI:10.1007/bfb0068227

Cité par 10 documents. Sources : Crossref