Soit une fonction harmonique dans le demi-espace , . Nous montrons que peut avoir une limite fine en presque chaque point du cube unité dans sans avoir pourtant de limite non tangentielle en aucun point du cube. La méthode est probabiliste et utilise l’équivalence entre limites conditionnelles du mouvement brownien et limites fines à la frontière.
Dans , il est connu que l’on peut caractériser les classes de Hardy , , par l’intégrabilité de la fonction maximale du mouvement brownien. Nous montrons que ce résultat est aussi valable dans , pour .
Let be harmonic in the half-space , . We show that can have a fine limit at almost every point of the unit cubs in but fail to have a nontangential limit at any point of the cube. The method is probabilistic and utilizes the equivalence between conditional Brownian motion limits and fine limits at the boundary.
In it is known that the Hardy classes , , may be described in terms of the integrability of the nontangential maximal function, or, alternatively, in terms of the integrability of a Brownian motion maximal function. This result is shown to hold in , for .
@article{AIF_1973__23_4_195_0, author = {Burkholder, D. L. and Gundy, Richard F.}, title = {Boundary behaviour of harmonic functions in a half-space and brownian motion}, journal = {Annales de l'Institut Fourier}, pages = {195--212}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {23}, number = {4}, year = {1973}, doi = {10.5802/aif.487}, mrnumber = {51 #1943}, zbl = {0253.31010}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.487/} }
TY - JOUR AU - Burkholder, D. L. AU - Gundy, Richard F. TI - Boundary behaviour of harmonic functions in a half-space and brownian motion JO - Annales de l'Institut Fourier PY - 1973 SP - 195 EP - 212 VL - 23 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.487/ DO - 10.5802/aif.487 LA - en ID - AIF_1973__23_4_195_0 ER -
%0 Journal Article %A Burkholder, D. L. %A Gundy, Richard F. %T Boundary behaviour of harmonic functions in a half-space and brownian motion %J Annales de l'Institut Fourier %D 1973 %P 195-212 %V 23 %N 4 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.487/ %R 10.5802/aif.487 %G en %F AIF_1973__23_4_195_0
Burkholder, D. L.; Gundy, Richard F. Boundary behaviour of harmonic functions in a half-space and brownian motion. Annales de l'Institut Fourier, Tome 23 (1973) no. 4, pp. 195-212. doi : 10.5802/aif.487. http://archive.numdam.org/articles/10.5802/aif.487/
[1] Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble), 13, (1963), 395-415. | Numdam | MR | Zbl
and ,[2] Distribution function inequalities for the area integral, Studia Math., 44, (1972), 527-544. | MR | Zbl
and ,[3] A maximal function characterization of the class Hp, Trans. Amer. Math. Soc., 157 (1971), 137-153. | MR | Zbl
, and ,[4] On the behaviour of harmonic functions at the boundary, Trans. Amer. Math. Soc., 68, (1950), 47-54. | MR | Zbl
,[5] On a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc., 68, (1950), 55-61. | MR | Zbl
,[6] On the existence of boundary values for harmonic functions in several variables, Arkiv för Mathematik, 4, (1961), 393-399. | MR | Zbl
,[7] Über das Verhalten der analytischen Abildungen Riemannscher Flachen auf dem idealen Rand von Martin, Nagoya Math. J., 17, (1960), 1-87. | MR | Zbl
and ,[8] Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France, 85, (1957), 431-458. | Numdam | MR | Zbl
,[9] Boundary limit theorems for a half-space, J. Math. Pures Appl., (9) 37, (1958), 385-392. | MR | Zbl
,[10] Hp-spaces in several variables, Acta Math., 129, (1972), 137-193. | MR | Zbl
and ,[11] Some properties of conjugate functions, J. fur Mat., 167, (1931), 405-423. | JFM | Zbl
and ,[12] Review 4471, Math. Reviews, 40, (1970), 824-825.
,[13] Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup., 66, (1949), 125-159. | Numdam | Zbl
,[14] A theorem of Lusin, Duke Math. J., 4, (1938), 473-485. | JFM | Zbl
and ,[15] Stochastic integrals, Academic Press, New York, 1969. | Zbl
,[16] Sur le rôle de la frontière de R. S. Martin dans la Théorie du potential, Ann. Inst. Fourier (Grenoble), 7, (1957), 183-285. | Numdam | MR | Zbl
,[17] Integral Cauchy, Saratov, 1919.
,[18] A function-theoretic identity, Amer. J. Math., 65, (1943), 147-160. | MR | Zbl
,[19] On the theory of harmonic functions of several variables II. Behaviour near the boundary, Acta Math., 106, (1961), 137-174. | MR | Zbl
,[20] On the theory of harmonic functions of several variables I. The theory of Hp-spaces, Acta Math., 103, (1960), 25-62. | MR | Zbl
and ,[21] The approximation of harmonic functions by harmonic polynomials and harmonic rational functions, Bull. Amer. Math. Soc., 35, (1929), 499-544. | JFM
,Cité par Sources :