Let be a hyperbolic Riemann surface, a harmonic measure supported on the Martin boundary of , and the subalgebra of consisting of the boundary values of bounded analytic functions on . This paper gives a complete classification of the closed -submodules of , (weakly closed, if , when is regular and admits a sufficiently large family of bounded multiplicative analytic functions satisfying an approximation condition. It also gives, as a corollary, a corresponding result for the Hardy spaces on . A generalized Cauchy theorem and its converse for are proved in the course of establishing the main result. The theory of Green lines is also used effectively.
Soient une surface de Riemann hyperbolique, une mesure harmonique à support dans la frontière de Martin de , et la sous-algèbre de formée des valeurs frontières de fonctions holomorphes bornées sur . On donne une classification complète des -sous-modules fermés de , (-fermés, si ), lorsque est régulière et admet une famille suffisamment grande de fonctions analytiques multiplicatives bornées satisfaisant une condition d’approximation. On en déduit un résultat correspondant pour les espaces de Hardy sur . Pour établir le résultat principal, on démontre et utilise un théorème de Cauchy généralisé et sa réciproque pour . La théorie des lignes de Green est aussi utilisée effectivement.
@article{AIF_1974__24_4_241_0, author = {Hasumi, Morisuke}, title = {Invariant subspaces on open {Riemann} surfaces}, journal = {Annales de l'Institut Fourier}, pages = {241--286}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {24}, number = {4}, year = {1974}, doi = {10.5802/aif.541}, mrnumber = {51 #901}, zbl = {0287.46066}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.541/} }
TY - JOUR AU - Hasumi, Morisuke TI - Invariant subspaces on open Riemann surfaces JO - Annales de l'Institut Fourier PY - 1974 SP - 241 EP - 286 VL - 24 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.541/ DO - 10.5802/aif.541 LA - en ID - AIF_1974__24_4_241_0 ER -
Hasumi, Morisuke. Invariant subspaces on open Riemann surfaces. Annales de l'Institut Fourier, Volume 24 (1974) no. 4, pp. 241-286. doi : 10.5802/aif.541. http://archive.numdam.org/articles/10.5802/aif.541/
[1] On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239-255. | MR | Zbl
,[2] Espaces et lignes de Green, Ann. Inst. Fourier, Grenoble, 3 (1952), 199-264. | Numdam | MR | Zbl
et ,[3] Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, 32, Springer, Berlin, 1963. | MR | Zbl
and ,[4] Bounded holomorphie functions and projections, Illinois J. Math., 10 (1966), 367-380. | MR | Zbl
,[5] Invariant subspace theorems for finite Riemann surfaces, Canad. J. Math., 18 (1966), 240-255. | MR | Zbl
,[6] Ideals and submodules of analytic functions on infinitely connected plane domains. Thesis, University of Illinois at Urbana-Champaign, 1972.
,[7] Invariant subspaces of Hardy classes on infinitely connected plane domains, Bull. Amer. Math. Soc., 78 (1972), 857-860. | MR | Zbl
,[8] Invariant subspaces of Hardy classes on infinitely connected open surfaces (to appear). | Zbl
,[9] A converse of Cauchy's theorem and applications to extremal problems, Acta Math., 100 (1958), 1-22. | MR | Zbl
,[10] Boundary values of analytic and harmonic functions, Math. Z., 78 (1962), 1-24. | MR | Zbl
,[11] The space of bounded analytic functions on a region, Ann. Inst. Fourier, Grenoble, 16 (1966), 235-277. | Numdam | MR | Zbl
and ,[12] Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, 164, Springer, Berlin, 1970. | MR | Zbl
and ,[13] Doubly invariant subspaces, Pacific J. Math., 14 (1964), 701-707. | MR | Zbl
,[14] Simply invariant subspaces and generalized analytic functions, Proc. Amer. Math. Soc., 16 (1965), 813-818. | MR | Zbl
,[15] Ideals and invariant subspaces of analytic functions, Trans. Amer. Math. Soc., 111 (1964), 493-512. | MR | Zbl
,[16] Invariant subspaces on Riemann surfaces, Canad. J. Math., 18 (1966), 399-403. | MR | Zbl
,[17] The maximum principle for multiple-valued analytic functions, Acta Math., 126 (1971), 63-82. | MR | Zbl
,[18] Hp sections of vector bundles over Riemann surfaces, Ann. of Math., 94 (1971), 304-324. | MR | Zbl
,[19] Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. inst. Fourier, Grenoble, 7 (1957), 183-281. | Numdam | MR | Zbl
,Cited by Sources: