The complement of an algebraic set of a complex projective space of dimension and the intersection of this complement with a general hyperplane have the same homotopy groups up to the order . That is a generalisation of a theorem of H. Hamm and Lê Dũng Tráng on the complement of a projective hypersurface.
Le complémentaire d’un ensemble algébrique dans un espace projectif complexe de dimension et la trace de ce complémentaire sur un hyperplan assez général ont mêmes groupes d’homotopie jusqu’à l’ordre . Cela généralise un théorème de H. Hamm et Lê Dũng Tráng sur le complémentaire d’une hypersurface projective.
@article{AIF_1975__25_1_195_0, author = {Cheniot, Denis}, title = {Un th\'eor\`eme du type de {Lefschetz}}, journal = {Annales de l'Institut Fourier}, pages = {195--213}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, number = {1}, year = {1975}, doi = {10.5802/aif.548}, mrnumber = {52 #10738}, zbl = {0332.14007}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/aif.548/} }
Cheniot, Denis. Un théorème du type de Lefschetz. Annales de l'Institut Fourier, Volume 25 (1975) no. 1, pp. 195-213. doi : 10.5802/aif.548. http://archive.numdam.org/articles/10.5802/aif.548/
[1] The second Lefschetz theorem on hyperplane sections, Global Analysis, Princeton University Press, 1969. | MR | Zbl
et ,[2] Une démonstration du théorème de Zariski sur les sections hyperplanes d'une hypersurface projective et du théorème de Van Kampen sur le groupe fondamental du complémentaire d'une courbe projective plane. Compositio Mathematica, vol. 27, fasc. 2 (1973), 141-158. | Numdam | MR | Zbl
,[3] Lectures on algebraic topology. Springer-Verlag, 1972. | MR | Zbl
,[4] Un théorème du type de Lefschetz, Annales scientifiques de l'E.N.S., vol. 6 Fasc. 3 (1973). | Numdam | MR | Zbl
et ,[5] Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings, Izvestija-Mathematics of the U.S.S.R., vol. 6, n° 5 (1972), 949-1008. | Zbl
,[6] Local properties of analytic varieties, Differential and conbinatorial topology, Princeton University Press, 1965. | MR | Zbl
,[7] Tangents to an analytic variety, Ann. Math., 81, n° 3 (1965), 496-549. | MR | Zbl
,[8] On the Poincaré group of a projective hypersurface, Ann. Math., 38, n° 1 (1937), 131-141. | JFM | Zbl
,Cited by Sources: