On étudie l’existence de solution du problème de Dirichlet pour un opérateur elliptique linéaire du second ordre dont les coefficients des dérivées du premier ordre deviennent infinis sur une partie de la frontière. On utilise les estimations de Schauder et des barrières convenablement construites.
We study the solvability of the Dirichlet problem for a linear elliptic operator of the second order in which the coefficients of the first order derivatives become infinite on a portion of the boundary. The study makes use of Schauder’s estimates and suitably constructed barriers.
@article{AIF_1976__26_1_205_0, author = {C\'ac, Nguyen Phuong}, title = {The {Dirichlet} problem for a singular elliptic equation}, journal = {Annales de l'Institut Fourier}, pages = {205--224}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {26}, number = {1}, year = {1976}, doi = {10.5802/aif.604}, mrnumber = {53 #6088}, zbl = {0312.35028}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.604/} }
TY - JOUR AU - Các, Nguyen Phuong TI - The Dirichlet problem for a singular elliptic equation JO - Annales de l'Institut Fourier PY - 1976 SP - 205 EP - 224 VL - 26 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.604/ DO - 10.5802/aif.604 LA - en ID - AIF_1976__26_1_205_0 ER -
Các, Nguyen Phuong. The Dirichlet problem for a singular elliptic equation. Annales de l'Institut Fourier, Tome 26 (1976) no. 1, pp. 205-224. doi : 10.5802/aif.604. http://archive.numdam.org/articles/10.5802/aif.604/
[1] Sur une classe d'opérateurs elliptiques dégénérés, Bull. Soc. Math. France, 95 (1967), 45-87. | Numdam | MR | Zbl
,[2] Quelques résultats généraux concernant la détermination de solutions d'équations elliptiques par les conditions aux frontières, Jubilé Scientifique de M.P. Riabonchinsky, Publ. Sci. et techn. du Ministère de l'Air, Paris, 1954.
and ,[3] Some results on generalized axially symmetric potentials, Proceedings of the Conference on Differential Equations, University of Maryland, 1955. | Zbl
,[4] Numerical methods for elliptic differential equations whose coefficients are singular on a portion of the boundary, Siam J. Numer. Anal., 4 (1967), 131-146. | MR | Zbl
and ,[5] Non coercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), 443-492. | MR | Zbl
and ,[6] Linear and quasilinear and quasilinear elliptic equations, Translated from the Russian, Academic Press, New York 1968. | MR | Zbl
and ,[7] Dirichlet problems for singular elliptic equations, Proc. Amer. Math. Soc., 39 (1973), 337-342. | MR | Zbl
,[8] Partial Differential Equations of Elliptic Type, Springer-Verlag, New York 1970. | MR | Zbl
,[9] Introduction de poids dans l'étude des problèmes aux limites, Ann. Inst. Fourier, Grenoble, 12 (1962), 299-414. | Numdam | MR | Zbl
,[10] Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, New Jersey 1967. | MR | Zbl
and ,[11] Boundary value problems for some degenerate elliptic operators, Ann. Math. Pura Appl. 80 (1968), 1-122. | MR | Zbl
and ,[12] On the Dirichlet problem for second order equations with coefficients singular at the boundary, Comm. Pure Appl. Math., 13 (1960), 321-328. | MR | Zbl
,Cité par Sources :