Continuity in spaces and spaces of Hölder type is proved for pseudodifferential operators of order zero, under general conditions on the class of symbols. Applications to the regularity theory of some hypoelliptic operators are outlined.
La continuité des opérateurs pseudo-différentiels d’ordre zéro dans les espaces et dans des espaces de Hölder est démontrée, sous des conditions générales pour les symboles. On esquisse des applications à la théorie de régularité des opérateurs hypoelliptiques.
@article{AIF_1979__29_3_239_0, author = {Beals, Richard}, title = {$L^p$ and {H\"older} estimates for pseudodifferential operators: sufficient conditions}, journal = {Annales de l'Institut Fourier}, pages = {239--260}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, number = {3}, year = {1979}, doi = {10.5802/aif.760}, mrnumber = {81c:47049}, zbl = {0387.35065}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.760/} }
TY - JOUR AU - Beals, Richard TI - $L^p$ and Hölder estimates for pseudodifferential operators: sufficient conditions JO - Annales de l'Institut Fourier PY - 1979 SP - 239 EP - 260 VL - 29 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.760/ DO - 10.5802/aif.760 LA - en ID - AIF_1979__29_3_239_0 ER -
%0 Journal Article %A Beals, Richard %T $L^p$ and Hölder estimates for pseudodifferential operators: sufficient conditions %J Annales de l'Institut Fourier %D 1979 %P 239-260 %V 29 %N 3 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.760/ %R 10.5802/aif.760 %G en %F AIF_1979__29_3_239_0
Beals, Richard. $L^p$ and Hölder estimates for pseudodifferential operators: sufficient conditions. Annales de l'Institut Fourier, Volume 29 (1979) no. 3, pp. 239-260. doi : 10.5802/aif.760. http://archive.numdam.org/articles/10.5802/aif.760/
[1] Lp and Hölder estimates for pseudodifferential operators : necessary conditions, Amer. Math. Soc. Proc. Symp. Pure Math., to appear. | Zbl
,[2] Lebesgue space of differentiable functions and distributions, Amer. Math. Soc. Proc. Symp. Pure Math., 5 (1961), 33-49. | MR | Zbl
,[3] Pseudo-differential operators with non-regular symbols, J. Differential Equations, 11 (1972), 436-447. | MR | Zbl
,[4] Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, no. 242, Springer-Verlag, Berlin, 1971. | MR | Zbl
and ,[5] The Weyl calculus of pseudodifferential operators, to appear.
,[6] An unsolvable hypoelliptic differential operator, Israel J. Math., 9 (1971), 306-315. | MR | Zbl
,[7] Oscillatory integrals of symbols of operators on Rn and operators of Fredholm type, Proc. Japan Acad., 49 (1973), 397-402. | MR | Zbl
and ,[8] Parametrices for a class of hypoelliptic operators, J. Differential Equations, to appear. | Zbl
,[9] A new class of pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A., 75 (1978), 582-585. | MR | Zbl
and ,[10] Symboles associés aux champs de repères de la forme symplectique, C.R. Acad. Sci., Paris, sér. A, 245 (1977), 1005-1008. | MR | Zbl
,Cited by Sources: