Soient un corps abélien réel, un nombre premier, premier à et le quotient du groupe des unités semi-locales de par celui des unités cyclotomiques : on donne la structure galoisienne de la limite projective des , généralisant un théorème d’Iwasawa, et on applique ceci à la comparaison de conjecture classique sur la limite projective des groupes de classes.
Let an abelian number field, a prime number, prime to , the quotient of the group of semi-local units in by the group of cyclotomic units. By giving the Galois structure of , we generalise a theorem of Iwasawa and use this result for comparing classical conjectures about projective limits of class groups.
@article{AIF_1979__29_4_1_0, author = {Gillard, Roland}, title = {Unit\'es cyclotomiques, unit\'es semi-locales et ${\mathbb {Z}}_\ell $-extensions. {II}}, journal = {Annales de l'Institut Fourier}, pages = {1--15}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, number = {4}, year = {1979}, doi = {10.5802/aif.763}, mrnumber = {81e:12005b}, zbl = {0403.12006}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/aif.763/} }
TY - JOUR AU - Gillard, Roland TI - Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. II JO - Annales de l'Institut Fourier PY - 1979 SP - 1 EP - 15 VL - 29 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.763/ DO - 10.5802/aif.763 LA - fr ID - AIF_1979__29_4_1_0 ER -
%0 Journal Article %A Gillard, Roland %T Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. II %J Annales de l'Institut Fourier %D 1979 %P 1-15 %V 29 %N 4 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.763/ %R 10.5802/aif.763 %G fr %F AIF_1979__29_4_1_0
Gillard, Roland. Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. II. Annales de l'Institut Fourier, Tome 29 (1979) no. 4, pp. 1-15. doi : 10.5802/aif.763. http://archive.numdam.org/articles/10.5802/aif.763/
[1] Éléments de mathématique, Algèbre commutative, Chap. 7, Hermann, Paris, 1965. | Zbl
,[2] p-adic L-functions and Iwasawa's theory, Durham conference on Algebraic Number Theory, edited by A. Fröhlich, Academic Press, Londres, 1977. | MR | Zbl
,[3] On l-adic zeta functions, Ann. of Math., 98 (1973), 498-550. | MR | Zbl
et ,[4] On p-adic L-functions and elliptic units, J. Austral. Math. Soc., series A 26 (1978), 1-25. | MR | Zbl
et ,[5] Some modules attached to Lubin-Tate groups, à paraître.
,[6] Iwasawa invariants of abelian number fields, Math. Ann., 234 (1978), 9-24. | MR | Zbl
,[7] The Iwasawa invariant µp vanishes for abelian number fields, Ann. of Math., à paraître. | Zbl
et ,[8] Unités cyclotomiques, unités semi-locales et Zl-extensions, Ann. Inst. Fourier, t. 29, fasc. 1 (1979), 49-79. | Numdam | MR | Zbl
,[9] Remarques sur les unités cyclotomiques et les unités elliptiques, J. of Numbers Theory, 11, 1 (1979), 21-48. | MR | Zbl
,[10] On p-adic L-functions and cyclotomic fields, Nagoya Math. J., 56 (1974), 61-77. | MR | Zbl
,[11] On p-adic L-functions and cyclotomic fields II, Nagoya Math. J., 67 (1977), 139-158. | MR | Zbl
,[12] On 2-adic L-functions and cyclotomic invariants, Math. Zeit., 159 (1978), 37-45. | MR | Zbl
,[13] On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, vol. 16, n° 1, (1964), 42-82. | MR | Zbl
,[14] On Zl-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326. | MR | Zbl
,[15] Lectures on p-adic L-functions, Ann. Math. Studies, 74, Princeton Univ. Press, 1972. | MR | Zbl
, ,Cité par Sources :