Suppose is a finite positive rotation invariant Borel measure on the open unit disc , and that the unit circle lies in the closed support of . For the Bergman space is the collection of functions in holomorphic on . We show that whenever a Gaussian power series almost surely lies in but not in , then almost surely: a) the zero set of is not contained in any zero set (, and b) is not contained in any zero set.
Soit une mesure positive invariante par rotation sur le disque unité ouvert , telle que le support de contienne le cercle unité. Pour l’ensemble des fonctions de qui sont holomorphes sur s’appelle l’espace de Bergman . Nous montrons que, lorsque la série de puissances à coefficients gaussiens indépendants est presque sûrement dans , alors il est presque sûr que : a) , ensemble des zéros de , n’est contenu dans aucun ensemble (c’est-à-dire , , ), et b) n’est contenu dans aucun .
@article{AIF_1979__29_4_159_0, author = {Shapiro, Joel H.}, title = {Zeros of random functions in {Bergman} spaces}, journal = {Annales de l'Institut Fourier}, pages = {159--171}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, number = {4}, year = {1979}, doi = {10.5802/aif.772}, mrnumber = {81h:30054}, zbl = {0403.46026}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.772/} }
TY - JOUR AU - Shapiro, Joel H. TI - Zeros of random functions in Bergman spaces JO - Annales de l'Institut Fourier PY - 1979 SP - 159 EP - 171 VL - 29 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.772/ DO - 10.5802/aif.772 LA - en ID - AIF_1979__29_4_159_0 ER -
Shapiro, Joel H. Zeros of random functions in Bergman spaces. Annales de l'Institut Fourier, Volume 29 (1979) no. 4, pp. 159-171. doi : 10.5802/aif.772. http://archive.numdam.org/articles/10.5802/aif.772/
[1] Intégrabilité des vecteurs gaussiens, C.R. Acad. Sci., Paris, 270 (1970), 1698-1699. | MR | Zbl
,[2] Zeros of functions in Bergman spaces, Duke Math. J., 41 (1974), 693-710. | MR | Zbl
,[3] Some Random Series of Functions, D.C. Heath and Co., Lexington, MA, 1968. | MR | Zbl
,[4] Zeros of holomorphic functions in balls, Indag. Math., 38 (1976), 57-65. | MR | Zbl
,[5] Principles of Real Analysis, 3rd ed., McGraw-Hill, New York, 1976. | Zbl
,[6] Real and Complex Analysis, McGraw-Hill, New York, 1974. | MR | Zbl
,[7] Zeros of functions in weighted Bergman spaces, Michigan Math. J., 24 (1977), 243-256. | MR | Zbl
,Cited by Sources: