We consider degenerated elliptic equations of the form
Under suitable assumptions on , we obtain a characterization of Wiener type (involving weighted capacities) for the set of regular points for these operators. The set of regular points is shown to depend only on . The main tool we use is an estimate for the Green function in terms of .
Nous considérons des équations elliptiques dégénérées, de la forme
En faisant des hypothèses convenables sur , nous obtenons une caractérisation du type de Weiner, (utilisant des capacités avec poids), pour l’ensemble de points réguliers de ces opérateurs. Nous montrons que l’ensemble de points réguliers dépend seulement de . L’outil fondamental que nous utilisons est une estimation pour la fonction de Green, par rapport à .
@article{AIF_1982__32_3_151_0, author = {Fabes, E. B. and Jerison, D. S. and Kenig, C. E.}, title = {The {Wiener} test for degenerate elliptic equations}, journal = {Annales de l'Institut Fourier}, pages = {151--182}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {3}, year = {1982}, doi = {10.5802/aif.883}, mrnumber = {84g:35067}, zbl = {0488.35034}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.883/} }
TY - JOUR AU - Fabes, E. B. AU - Jerison, D. S. AU - Kenig, C. E. TI - The Wiener test for degenerate elliptic equations JO - Annales de l'Institut Fourier PY - 1982 SP - 151 EP - 182 VL - 32 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.883/ DO - 10.5802/aif.883 LA - en ID - AIF_1982__32_3_151_0 ER -
%0 Journal Article %A Fabes, E. B. %A Jerison, D. S. %A Kenig, C. E. %T The Wiener test for degenerate elliptic equations %J Annales de l'Institut Fourier %D 1982 %P 151-182 %V 32 %N 3 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.883/ %R 10.5802/aif.883 %G en %F AIF_1982__32_3_151_0
Fabes, E. B.; Jerison, D. S.; Kenig, C. E. The Wiener test for degenerate elliptic equations. Annales de l'Institut Fourier, Volume 32 (1982) no. 3, pp. 151-182. doi : 10.5802/aif.883. http://archive.numdam.org/articles/10.5802/aif.883/
[1] Selected Problems on Exceptional Sets, 1967, Van Nostrand. | MR | Zbl
,[2] Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250. | MR | Zbl
and ,[3] Théorie de la capacité dans les espaces fonctionnels, Séminaire Brelot-Choquet-Deny (Théorie du Potentiel). no. 1, (1964-1965), 1-13. | Numdam | Zbl
,[4] Boundary behavior of solutions of degenerate elliptic equations, preprint.
, and ,[5] The local regularity of solutions of degenerate elliptic equations, Comm. in P.D.E., 7(1) (1982), 77-116. | MR | Zbl
, , and ,[6] The Lp integrability of the partial derivatives of a quasi conformal mapping, Acta Math., 130 (1973), 266-277. | MR | Zbl
,[7] An Introduction to Variational Inequalities and their Applications, 1980, Academic Press, N.Y., N.Y. | MR | Zbl
and ,[8] Regular points for elliptic equations with discontinuous coefficients, Ann. della Scuola Normale Sup. di Pisa, S. 3, vol. 17 (1963), 45-79. | Numdam | MR | Zbl
, and ,Cited by Sources: