The Wiener test for degenerate elliptic equations
Annales de l'Institut Fourier, Volume 32 (1982) no. 3, pp. 151-182.

We consider degenerated elliptic equations of the form

i , j D x i ( a i j ( x ) D x j ) , where λ w ( x ) | ξ | 2 i , j a i j ( x ) ξ i ξ j Λ w ( x ) | ξ | 2 .

Under suitable assumptions on w, we obtain a characterization of Wiener type (involving weighted capacities) for the set of regular points for these operators. The set of regular points is shown to depend only on w. The main tool we use is an estimate for the Green function in terms of w.

Nous considérons des équations elliptiques dégénérées, de la forme

i , j D x i ( a i j ( x ) D x j ) , λ w ( x ) | ξ | 2 i , j a i j ( x ) ξ i ξ j Λ w ( x ) | ξ | 2 .

En faisant des hypothèses convenables sur w, nous obtenons une caractérisation du type de Weiner, (utilisant des capacités avec poids), pour l’ensemble de points réguliers de ces opérateurs. Nous montrons que l’ensemble de points réguliers dépend seulement de w. L’outil fondamental que nous utilisons est une estimation pour la fonction de Green, par rapport à w.

@article{AIF_1982__32_3_151_0,
     author = {Fabes, E. B. and Jerison, D. S. and Kenig, C. E.},
     title = {The {Wiener} test for degenerate elliptic equations},
     journal = {Annales de l'Institut Fourier},
     pages = {151--182},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {32},
     number = {3},
     year = {1982},
     doi = {10.5802/aif.883},
     mrnumber = {84g:35067},
     zbl = {0488.35034},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.883/}
}
TY  - JOUR
AU  - Fabes, E. B.
AU  - Jerison, D. S.
AU  - Kenig, C. E.
TI  - The Wiener test for degenerate elliptic equations
JO  - Annales de l'Institut Fourier
PY  - 1982
SP  - 151
EP  - 182
VL  - 32
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.883/
DO  - 10.5802/aif.883
LA  - en
ID  - AIF_1982__32_3_151_0
ER  - 
%0 Journal Article
%A Fabes, E. B.
%A Jerison, D. S.
%A Kenig, C. E.
%T The Wiener test for degenerate elliptic equations
%J Annales de l'Institut Fourier
%D 1982
%P 151-182
%V 32
%N 3
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.883/
%R 10.5802/aif.883
%G en
%F AIF_1982__32_3_151_0
Fabes, E. B.; Jerison, D. S.; Kenig, C. E. The Wiener test for degenerate elliptic equations. Annales de l'Institut Fourier, Volume 32 (1982) no. 3, pp. 151-182. doi : 10.5802/aif.883. http://archive.numdam.org/articles/10.5802/aif.883/

[1] L. Carleson, Selected Problems on Exceptional Sets, 1967, Van Nostrand. | MR | Zbl

[2] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250. | MR | Zbl

[3] J. Deny, Théorie de la capacité dans les espaces fonctionnels, Séminaire Brelot-Choquet-Deny (Théorie du Potentiel). no. 1, (1964-1965), 1-13. | Numdam | Zbl

[4] E.B. Fabes, D.S. Jerison and C.E. Kenig, Boundary behavior of solutions of degenerate elliptic equations, preprint.

[5] E.B. Fabes, C.E. Kenig, and R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. in P.D.E., 7(1) (1982), 77-116. | MR | Zbl

[6] F. Gehring, The Lp integrability of the partial derivatives of a quasi conformal mapping, Acta Math., 130 (1973), 266-277. | MR | Zbl

[7] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, 1980, Academic Press, N.Y., N.Y. | MR | Zbl

[8] W. Littman, G. Stampacchia and H. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. della Scuola Normale Sup. di Pisa, S. 3, vol. 17 (1963), 45-79. | Numdam | MR | Zbl

Cited by Sources: