Characteristic Cauchy problems and solutions of formal power series
Annales de l'Institut Fourier, Tome 33 (1983) no. 1, pp. 131-176.

Soit L(z, z )=( z 0 ) k -A(z, z ) un opérateur linéaire différentiel à coefficients holomorphes, où

A ( z , z ) = j = 0 k - 1 A j ( z , z ) ( z 0 ) j , ord . A ( z , z ) = m > k

et

z = ( z 0 , z ) C n + 1 .

On considère le problème de Cauchy aux données holomorphes

L ( z , z ) u ( z ) = f ( z ) , ( z 0 ) i u ( 0 , z ) = u ^ i ( z ) ( 0 i k - 1 ) .

On peut facilement obtenir une solution formelle u ^(z)= n=0 u ^ n (z )(z 0 ) n /n!, mais en général elle diverge. On montre sous certaines conditions que pour un secteur arbitraire S d’ouverture moindre qu’une constante déterminée par L(z, z ), il y a une fonction u S (z) holomorphe sauf sur {z 0 =0}, telle que L(z, z )u S (z)=f(z) et u S (z)u ^(z) quand z 0 0 dans S.

Let L(z, z )=( z 0 ) k -A(z, z ) be a linear partial differential operator with holomorphic coefficients, where

A ( z , z ) = j = 0 k - 1 A j ( z , z ) ( z 0 ) j , ord . A ( z , z ) = m > k

and

z = ( z 0 , z ) C n + 1 .

We consider Cauchy problem with holomorphic data

L ( z , z ) u ( z ) = f ( z ) , ( z 0 ) i u ( 0 , z ) = u ^ i ( z ) ( 0 i k - 1 ) .

We can easily get a formal solution u ^(z)= n=0 u ^ n (z )(z 0 ) n /n!, bu in general it diverges. We show under some conditions that for any sector S with the opening less that a constant determined by L(z, z ), there is a function u S (z) holomorphic except on {z 0 =0} such that L(z, z )u S (z)=f(z) and u S (z)u ^(z) as z 0 0 in S.

@article{AIF_1983__33_1_131_0,
     author = {Ouchi, Sunao},
     title = {Characteristic {Cauchy} problems and solutions of formal power series},
     journal = {Annales de l'Institut Fourier},
     pages = {131--176},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {33},
     number = {1},
     year = {1983},
     doi = {10.5802/aif.907},
     mrnumber = {85g:35014},
     zbl = {0494.35017},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.907/}
}
TY  - JOUR
AU  - Ouchi, Sunao
TI  - Characteristic Cauchy problems and solutions of formal power series
JO  - Annales de l'Institut Fourier
PY  - 1983
SP  - 131
EP  - 176
VL  - 33
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.907/
DO  - 10.5802/aif.907
LA  - en
ID  - AIF_1983__33_1_131_0
ER  - 
%0 Journal Article
%A Ouchi, Sunao
%T Characteristic Cauchy problems and solutions of formal power series
%J Annales de l'Institut Fourier
%D 1983
%P 131-176
%V 33
%N 1
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.907/
%R 10.5802/aif.907
%G en
%F AIF_1983__33_1_131_0
Ouchi, Sunao. Characteristic Cauchy problems and solutions of formal power series. Annales de l'Institut Fourier, Tome 33 (1983) no. 1, pp. 131-176. doi : 10.5802/aif.907. http://archive.numdam.org/articles/10.5802/aif.907/

[1] Y. Hamada, The singularity of solutions of Cauchy problem, Publ. Res. Inst. Math. Sci., 5 (1969), 21-40. | MR | Zbl

[2] Y. Hamada, Problème analytique de Cauchy à caractéristiques multiples dont les données de Cauchy ont des singularités polaires, C.R.A.S., Paris, Ser. A, 276 (1973), 1681-1684. | MR | Zbl

[3] Y. Hamada, J. Leray et C. Wagschal, Systèmes d'équations aux dérivées partielles à caractéristiques multiples ; Problème de Cauchy ramifié ; hyperbolicité partielle, J. Math. Pure Appl., 55 (1971), 297-352. | MR | Zbl

[4] H. Komatsu, Irregularity of characteristic elements and construction of null solutions, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 23 (1976), 297-342. | MR | Zbl

[5] S. Mizohata, On kowalewskian systems, Russian Math. Survey, 29, vol. 2 (1974), 223-235. | MR | Zbl

[6] S. Ōuchi, Asymptotic behaviour of singular solutions of linear partial differential equations in the complex domain, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27 (1980), 1-36. | MR | Zbl

[7] S. Ōuchi, An integral representation of singular solutions of linear partial differential equations in the complex domain, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27 (1980), 37-85. | MR | Zbl

[8] S. Ōuchi, Characteristic Cauchy problems and solutions of formal power series, Proc. Japan Acad., vol. 56 (1980), 372-375. | MR | Zbl

[9] J. Persson, On the Cauchy problem in Cn with singular data, Mathematiche, 30 (1975), 339-362. | MR | Zbl

[10] C. Wagschal, Problème de Cauchy analytique à données méromorphes, J. Math. Pure Appl., 51 (1972), 375-397. | MR | Zbl

[11] W. Wasow, Asymptotic expansions for ordinary differential equations, Interscience Publishers, 1965. | MR | Zbl

Cité par Sources :