For a stratified mapping , we consider the condition concerning the kernel of the differential of . We show that the condition is equivalent to the condition which has a more obvious geometric content.
Pour une application stratifiée , on considère la condition concernant le noyau de la différentielle de . On montre que la condition est équivalent à la condition qui a un contenu géométrique plus évident.
@article{AIF_1983__33_1_177_0, author = {Koike, Satoshi}, title = {On condition $(a_f)$ of a stratified mapping}, journal = {Annales de l'Institut Fourier}, pages = {177--184}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {1}, year = {1983}, doi = {10.5802/aif.908}, mrnumber = {85c:58019}, zbl = {0476.58002}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.908/} }
TY - JOUR AU - Koike, Satoshi TI - On condition $(a_f)$ of a stratified mapping JO - Annales de l'Institut Fourier PY - 1983 SP - 177 EP - 184 VL - 33 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.908/ DO - 10.5802/aif.908 LA - en ID - AIF_1983__33_1_177_0 ER -
Koike, Satoshi. On condition $(a_f)$ of a stratified mapping. Annales de l'Institut Fourier, Volume 33 (1983) no. 1, pp. 177-184. doi : 10.5802/aif.908. http://archive.numdam.org/articles/10.5802/aif.908/
[1] Topological stability of smooth mappings, Springer Lect. Notes, Berlin Vol. 552 (1976). | MR | Zbl
, , , ,[2] Notes on topological stability, mimeographed, Harvard Univ. (1970).
,[3] Geometric versions of Whitney regularity for smooth stratifications, Ann. scient. Ec. Norm. Sup., Vol. 12 (1979), 461-471. | Numdam | MR | Zbl
,Cited by Sources: