Le problème de Gleason est résolu dans le cas particulier des domaines analytiques réels pseudo-convexes de . Dans ce cas, les points faiblement pseudo-convexes peuvent former un sous-ensemble de dimension 2 du bord.
Le problème de Gleason est ramené à une question sur en montrant que l’ensemble des points de Kohn-Nirenberg a au plus une dimension. En fait, exception faite d’un sous-ensemble unidimensionnel, les points faiblement pseudo-convexes du bord sont des -points comme ceux étudiés par Range et admettent donc des estimations de par des normes de la borne supérieure locales.
The Gleason problem is solved on real analytic pseudoconvex domains in . In this case the weakly pseudoconvex points can be a two-dimensional subset of the boundary. To reduce the Gleason problem to a question it is shown that the set of Kohn-Nirenberg points is at most one-dimensional. In fact, except for a one-dimensional subset, the weakly pseudoconvex boundary points are -points as studied by Range and therefore allow local sup-norm estimates for .
@article{AIF_1983__33_2_77_0, author = {Fornaess, John Erik and Ovrelid, M.}, title = {Finitely generated ideals in $A(\omega )$}, journal = {Annales de l'Institut Fourier}, pages = {77--85}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {2}, year = {1983}, doi = {10.5802/aif.916}, mrnumber = {84h:32019}, zbl = {0489.32013}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.916/} }
TY - JOUR AU - Fornaess, John Erik AU - Ovrelid, M. TI - Finitely generated ideals in $A(\omega )$ JO - Annales de l'Institut Fourier PY - 1983 SP - 77 EP - 85 VL - 33 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.916/ DO - 10.5802/aif.916 LA - en ID - AIF_1983__33_2_77_0 ER -
Fornaess, John Erik; Ovrelid, M. Finitely generated ideals in $A(\omega )$. Annales de l'Institut Fourier, Tome 33 (1983) no. 2, pp. 77-85. doi : 10.5802/aif.916. http://archive.numdam.org/articles/10.5802/aif.916/
[1] Hölder estimates for the Z-equation with a support condition, Pacific J. Math., 90 (1980), 249-257. | MR | Zbl
,[2] Pseudoconvex domains : Existence of Stein neighbourhoods, Duke J. Math., 44 (1977), 641-662. | Zbl
and ,[3] The Mergelyan property for weakly pseudoconvex domains, Manuscripta Math., 22 (1977), 199-208. | MR | Zbl
and ,[4] Finitely generated ideals in Banach algebras, J. Math. Mech., 13 (1964), 125-132. | MR | Zbl
,[5] Approximation of functions in pseudoconvex domains and Leibenzon's theorem, Bull. Acad. Pol. Sci. Ser. Math. Astron. et Phys., 19 (1971), 37-42. | Zbl
,[6] Finitely generated ideals in certain function algebras, J. Funct. Anal., 7 (1971), 212-215. | MR | Zbl
and ,[7] Boundary behavior of Z on weakly pseudoconvex manifolds of dimension two, J. Diff. Geom., 6 (1972), 523-542. | MR | Zbl
,[8] A pseudoconvex domain not admitting a holomorphic support function, Math. Ann., 201 (1973), 265-268. | MR | Zbl
and ,[9] Die Cauchy-Riemannschen Differentialgleichung auf streng pseudokonveksen Gebieten : Stetige Randwerte, Math. Ann., 199 (1972), 241-256. | MR | Zbl
,[10] Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 449-474. | Numdam | Zbl
,[11] Øn Hölder estimates for Zu = f on weakly pseudoconvex domains, Cortona Proceedings, Cortona, 1976-1977, 247-267. | Zbl
,[12] Generators of the maximal ideals of A (D), Pac. J. Math., 39 (1971), 219-233. | MR | Zbl
,Cité par Sources :