In this paper I consider a covering of a Riemannian manifold . I prove that Green’s function exists on if any and only if the symmetric translation invariant random walks on the covering group are transient (under the assumption that is compact).
Dans cet article, je considère un revêtement riemannien. Je démontre que l’existence de la fonction de Green sur est équivalente au fait que , le groupe de revêtement, est “transient" (à condition que soit compacte).
@article{AIF_1983__33_2_241_0, author = {Varopoulos, Nicolas Th.}, title = {Brownian motion and transient groups}, journal = {Annales de l'Institut Fourier}, pages = {241--261}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {2}, year = {1983}, doi = {10.5802/aif.926}, mrnumber = {84i:58130}, zbl = {0498.60012}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.926/} }
TY - JOUR AU - Varopoulos, Nicolas Th. TI - Brownian motion and transient groups JO - Annales de l'Institut Fourier PY - 1983 SP - 241 EP - 261 VL - 33 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.926/ DO - 10.5802/aif.926 LA - en ID - AIF_1983__33_2_241_0 ER -
Varopoulos, Nicolas Th. Brownian motion and transient groups. Annales de l'Institut Fourier, Volume 33 (1983) no. 2, pp. 241-261. doi : 10.5802/aif.926. http://archive.numdam.org/articles/10.5802/aif.926/
[1] Stochastic Integrals, Academic Press, 1969. | Zbl
,[2] Potential Theory and Diffusion on Riemannian manifolds, Zygmund 80th Birthday Volume, Chicago, 1981.
,[3] Springer Verlag Lecture Notes, n° 678.
et al.,[4] Springer Verlag Lecture Notes, n° 624.
et al.,[5]
, C. R. A. S., (1982), to appear.[6] Groups of polynomial growth and expanding maps, Publications Math. I.H.E.S., n° 53 (1981). | Numdam | MR | Zbl
,[7] Classical Harmonic Analysis and locally compact groups, Oxford Math. Monograph, (1968), O.U.P. | MR | Zbl
,[8] Zbl
, et , C. R. A. S., Paris, t. 285 (A), (1977), 1103-1104. |[9] On the upper estimate of the heat kernel of a complete Riemannian manifold, American J. Math., Vol. 103, n° 5 (1981), 1021-1063. | MR | Zbl
, and ,[10] A lower Bound of the heat kernel, Comm. on Pure and Appl. Math., Vol. XXXIV (1981), 465-480. | MR | Zbl
and ,[11] A note on curvature and fundamental group., J. Diff. Geom., 2 (1968), 1-7. | MR | Zbl
,[12] Winding of the plane Brownian motion (preprint). | Zbl
and ,[13] An introduction to Probability Theory and its Applications (3rd Edition), Wiley. | Zbl
,[14] Amenability and the Spectrum of the Laplacian, Bull. Amer. Math. Soc., Vol. 6, 87-89 (1982), n° 1. | MR | Zbl
,[15] Random walks on soluble Groups, Bull. Sci. Math. (to appear). | Zbl
,Cited by Sources: